Capture of nanomagnetic 'fingerprints' a boost for next-generation information storage media

Now a team of physicists at the University of California, Davis, has developed a technique to capture the magnetic “fingerprints” of certain nanostructures – even when they are buried within the boards and junctions of an electronic device. This breakthrough in nanomagnetism was published in the Jan. 19 issue of Applied Physics Letters.

The past decade has witnessed a thousand-fold increase in magnetic recording area density, which has revolutionized the way information is stored and retrieved. These advances are based on the development of nanomagnet arrays which take advantage of the new field of spintronics: using electron spin as well as charge for information storage, transmission and manipulation.

But due to the miniscule physical dimensions of nanomagnets – some are as small as 50 atoms wide – observing their magnetic configurations has been a challenge, especially when they are not exposed but built into a functioning device.

“You can't take full advantage of these nanomagnets unless you can 'see' and understand their magnetic structures – not just how the atoms and molecules are put together, but how their electronic and magnetic properties vary accordingly,” said Kai Liu, a professor and Chancellor's Fellow in physics at UC Davis. “This is difficult when the tiny nanomagnets are embedded and when there are billions of them in a device.”

To tackle this challenge, Liu and three of his students, Jared Wong, Peter Greene and Randy Dumas, created copper nanowires embedded with magnetic cobalt nanodisks. Then they applied a series of magnetic fields to the wires and measured the responses from the nanodisks. By starting each cycle at full saturation – that is, using a field strong enough to align all the nanomagnets – then applying a progressively more negative field with each reversal, they created a series of information-rich graphic patterns known to physicists as “first-order reversal curve (FORC) distributions.”

“Each pattern tells us a different story about what's going on inside the nanomagnets,” Liu said. “We can see how they switch from one alignment to another, and get quantitative information about how many nanomagents are in one particular phase: for example, whether the magnetic moments are all pointing in the same direction or curling around a disk to form vortices. This in turn tells us how to encode information with these nanomagnets.”

The technique will be applicable to a wide variety of physical systems that exhibit the kind of lag in response time (or hysteresis) as magnets, including ferroelectric, elastic and superconducting materials, Liu explained. “It's a powerful tool for probing variations, or heterogeneity, in the system, and real materials always have a certain amount of this.”

Media Contact

Liese Greensfelder EurekAlert!

More Information:

http://www.ucdavis.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors