Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CALIFA survey publishes intimate details of 100 galaxies

31.10.2012
The Calar Alto Legacy Integral Field Area survey (CALIFA survey) has published a first set of data, offering views of one hundred galaxies in the local Universe at an unprecedented level of detail.

The new data represent the first large-scale effort at "two plus one" mapping of galaxies: for every pixel within each two-dimensional image, a detailed ("spectral") analysis can be performed, providing information about dynamics and chemical composition. These, in turn, yield key information that will allow scientists to reconstruct the structure and dynamics of galaxies, as well as their evolution over time.


The CALIFA Survey will provide detailed information about 600 galaxies in the local Universe. This image shows two examples: The quiescent elliptical galaxy NGC 6125 (top) and the spiral galaxy NGC 2916, in which stars are still forming (bottom). For each galaxy, an image taken by an earlier survey (SDSS) is seen on the left. The image on the right shows CALIFA data about whether or not that part of the galaxy is moving towards us (blueish colors) or away from us (reddish colors). The elliptical galaxy is rotating very gently. In the spiral galaxy, on the other hand, the stars rotate with speeds of up to 180 kilometres per second or more.
Credit: CALIFA-Team / M. Lyubenova (MPIA)

Galaxies are the large-scale building blocks of the cosmos. Their visible ingredients include between millions and hundreds of billions of stars as well as clouds of gas and dust. "Understanding the dynamical processes within and between galaxies that have shaped the way they are today is a key part of understanding our wider cosmic environment.", explains Dr. Glenn van de Ven, a member of the managing board of the CALIFA survey and staff scientist at the Max Planck Institute for Astronomy (MPIA).

Traditionally, when it came to galaxies, astronomers had to choose between different observational techniques. They could, for instance, take detailed images with astronomical cameras showing the various features of a galaxy as well as their spatial relations, but they could not at the same time perform detailed analyses of the galaxy's light, that is "obtain a galaxy spectrum". Taking spectra required a different kind of instrument known as a spectrograph, which, as a downside, would only provide very limited information about the galaxy's spatial structure.

An increasingly popular observational technique, integral field spectroscopy (IFS), combines the best of both worlds. The IFS instrument PMAS mounted at the Calar Alto Observatory's 3.5 metre telescope uses 350 optical fibres to guide light from a corresponding number of different regions of a galaxy image into a spectrograph. In this way, astronomers are not restricted to analysing the galaxy as a whole – they can analyse the light coming from many different specific parts of a galaxy. The result are detailed maps of galaxy properties such as their chemical composition, and of the motions of their stars and their gas.

For the CALIFA survey, more than 900 galaxies in the local Universe, namely at distances between 70 and 400 million light years from the Milky Way, were selected from the northern sky to fully fit into the field-of-view of PMAS. They include all possible types, from roundish elliptical to majestic spiral galaxies, similar to our own Milky Way and the Andromeda galaxy. The allocated observation time will allow for around 600 of the pre-selected galaxies to be observed in depth.

The resulting data could revolutionize astronomers' understanding of galactic dynamics. Dr. Knud Jahnke, one of the co-founding members of the CALIFA project, is excited about one possibility in particular: "Large amounts of gas in these galaxies are being ionized – intense radiation is stripping the gas's atoms of electrons. CALIFA allows us to study these processes in unprecedented detail." With surprising consequences, as graduate student Robert Singh adds: "For the past 30 years, astronomers thought they understood the origin of this ionizing radiation. But our initial analysis strongly suggests that the standard paradigm is wrong."

"Even the mysterious dark matter in these galaxies can no longer evade detection", adds Dr. Mariya Lyubenova, a postdoctoral research fellow at MPIA. Dark matter accounts for roughly 20% of the total energy content of the Universe, but its exact distribution within distant galaxies is difficult to determine. However, whereas dark matter cannot be seen directly, its gravitational attraction influences the motions of a galaxy's stars and gas. CALIFA will be able to track these motions with great precision, allowing the galaxy's dark matter distribution to be uncovered.

It is important to note that CALIFA is a legacy survey: all of its data will become freely available online to be used by scientists world-wide. The data on an initial set of 100 galaxies are now being released. CALIFA is the first IFS study to be explicitly designed as a legacy project and, upon completion, it will be the largest survey of this kind ever accomplished.

Contact information

Glenn van de Ven (member, CALIFA managing board)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 275
Email: glenn@mpia.de
Knud Jahnke (co-founding member, CALIFA)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 398
Email: jahnke@mpia.de
Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2e.php?Aktuelles/PR/2012/PR121031/PR_121031_en.html

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>