Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond good vibrations: New insights into metamaterial magic

07.11.2017

Metamaterials offer the very real possibility that our most far-fetched fancies could one day become real as rocks. From invisibility cloaks and perfect lenses to immensely powerful batteries, their super-power applications tantalize the imagination. That said, so far "tantalize" has been the operative word, even though scientists have been studying metamaterials for more than 15 years.

"Not many real metamaterial devices have been developed," says Elena Semouchkina, an associate professor of electrical engineering at Michigan Technological University. Soldiers can't throw invisibility cloaks over their shoulders to elude sniper fire, and no perfect lens app lets you see viruses with your smartphone. In part, that's because traditionally, researchers overly simplify how metamaterials actually work. Semouchkina says their complications often have been ignored.


The shape and positioning of the rods in this metamaterial cause light--the arrow--to bend at a negative angle, a process called negative refraction. Better understanding of this dynamic will speed the development of new metamaterials such as perfect lenses and invisibility cloaks, says Michigan Tech's Elena Semouchkina.

Credit: Navid Ganji, Michigan Tech

So she and her team set about investigating those complications and discovered that the magic of metamaterials is driven by more than just one mechanism of physics. A paper describing their research was recently published online by the Journal of Physics D: Applied Physics.

Simple!

Metamaterials may seem complex and futuristic, but the opposite is closer to the truth, says Semouchkina. Metamaterials ("meta" is the Greek word for "beyond") are engineered materials that have properties not found in nature. They are typically built of multiple identical elements fashioned from conventional materials, such as metals or nonconductive materials. Think of a Rubik's cube made of millions of units smaller than the thickness of a human hair.

These designer materials work by bending the paths of electromagnetic radiation--from radio waves to visible light to high-energy gamma rays--in new and different ways. How metamaterials bend those paths--a process called refraction--drives their peculiar applications. For example, a metamaterial invisibility cloak would bend the paths of light waves around a cloaked object, accelerating them on their way, and reunite them on the other side. Thus, an onlooker could see what was behind the object, while the object itself would be invisible.

The conventional approach among metamaterials researchers has been to relate a metamaterial's refractive properties to resonance. Each tiny building block of the metamaterial vibrates like a tuning fork as the electromagnetic radiation passes through, causing the desired type of refraction.

But not that simple . . .

Semouchkina wondered if there might be additional factors involved in bending the paths of the waves.

"Metamaterials seem simple, but their physics is more complicated," she says, explaining that she and her team focused on dielectric metamaterials, which are built of elements that don't conduct electricity.

The team ran numerous computer simulations and made a surprising discovery: it was the shape and repetitive organization of the building blocks within the metamaterial--their periodicity--that affected the refraction. Resonance seemed to have little or nothing to do with it.

The metamaterials they studied had characteristics of another type of artificial material, photonic crystals. Like metamaterials, photonic crystals are made of many identical cells. In addition, they behave like the semiconductors used in electronics, except they transmit photons instead of electrons.

"We found that the properties that go along with being a photonic crystal can mask the resonance of metamaterials, to the point they can cause unusual refraction-- including negative refraction, which is necessary for the development of a perfect lens," Semouchkina says.

Back to Basics

So what does this mean for the scientists and engineers designing tomorrow's super materials?

"Basically, we need to recognize that some of these structures can exhibit properties of photonic crystals, and we need to take their physics into account," Semouchkina says. "It's an evolving field, and it's a lot more complicated than we've given it credit for."

Semouchkina's team is working on developing invisibility cloaks using photonic crystals, but she stresses that metamaterials research can have other real-world applications. One of her projects focuses on using metamaterial concepts to improve the sensitivity of magnetic resonance imaging (MRI), which could lead to better medical diagnostics and advances in biological research.

"This is a very practical outcome, compared to the Harry Potter stuff," she says.

Understanding the underlying physics of metamaterials will speed up the development of such devices.

Media Contact

Allison Mills
awmills@mtu.edu
906-487-2343

 @michigantech

http://www.mtu.edu 

Allison Mills | EurekAlert!

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>