Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atoms dressed with light show new interactions, could reveal way to observe enigmatic particle

09.12.2011
Physicists at the National Institute of Standards and Technology (NIST) have found a way to manipulate atoms' internal states with lasers that dramatically influences their interactions in specific ways.

Such light-tweaked atoms can be used as proxies to study important phenomena that would be difficult or impossible to study in other contexts. Their most recent work, appearing in Science,* demonstrates a new class of interactions thought to be important to the physics of superconductors that could be used for quantum computation.

Particle interactions are fundamental to physics, determining, for example, how magnetic materials and high temperature superconductors work. Learning more about these interactions or creating new "effective" interactions will help scientists design materials with specific magnetic or superconducting properties.

Because most materials are complicated systems, it is difficult to study or engineer the interactions between the constituent electrons. Researchers at NIST build physically analogous systems using supercooled atoms to learn more about how materials with these properties work.

"Basically, we're able to simulate these complicated systems and observe how they work in slow motion," says Ian Spielman, a physicist at NIST and fellow of the Joint Quantum Institute (JQI), a collaborative enterprise of NIST and the University of Maryland.

According to Ross Williams, a postdoctoral researcher at NIST, cold atom experiments are good for studying many body systems because they offer a high degree of control over position and behavior of the atoms.

"First, we trap rubidium-87 atoms using magnetic fields and cool them down to 100 nanokelvins," says Williams. "At these temperatures, they become what's known as a Bose-Einstein condensate. Cooling the atoms this much makes them really sluggish, and once we see that they are moving slowly enough, we use lasers to 'dress' the atoms, or mix together different energy states within them. Once we have dressed the atoms, we split the condensate, collide the two parts, and then see how they interact."

According to Williams, without being laser-dressed, simple, low-energy interactions dominate how the atoms scatter as they come together. While in this state, the atoms bang into each other and scatter to form a uniform sphere that looks the same from every direction, which doesn't reveal much about how the atoms interacted.

When dressed, however, the atoms tended to scatter in certain directions and form interesting shapes indicative of the influence of new, more complicated interactions, which aren't normally seen in ultracold atom systems. The ability to induce them allows researchers to explore a whole new range of exciting quantum phenomena in these systems.

While the researchers used rubidium atoms, which are bosons, for this experiment, they are modifying the scheme to study ultracold fermions, a different species of particle. The group hopes to find evidence of the Majorana fermion, an enigmatic, still theoretical kind of particle that is involved in superconducting systems important to quantum computation.

"A lot of people are looking for the Majorana fermion," says Williams. "It would be great if our approach helped us to be the first."

For more details, see the JQI news announcement, "The Impact of Quantum Matter" at http://jqi.umd.edu/news/291-the-impact-of-quantum-matter.html.

View an animation of the atom interactions on the NIST YouTube channel at http://www.youtube.com/watch?v=cRiLCTnFRdM

* R.A. Williams, L.J. LeBlanc, K. Jiménez-García, M.C. Beeler, A.R. Perry, W.D. Phillips, I.B. Spielman. Synthetic Partial Waves in Ultracold Atomic Collisions . Science Express, 8 December 2011

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Atoms at the photo shoot
03.08.2020 | Humboldt-Universität zu Berlin

nachricht Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites
03.08.2020 | Universität Bayreuth

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>