Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers take first, high-resolution look at huge star-forming region of Milky Way

16.04.2019

Astronomers from the United States and South Korea have made the first high-resolution, radio telescope observations of the molecular clouds within a massive star-forming region of the outer Milky Way.

"This region is behind a nearby cloud of dust and gas," said Charles Kerton, an associate professor of physics and astronomy at Iowa State University and a member of the study team. "The cloud blocks the light and so we have to use infrared or radio observations to study it."


This image from a radio telescope shows a huge star-forming region of the outer Milky Way galaxy. The ovals identify the main subdivisions of the region's molecular cloud, including the smaller 1a, which is very efficient at producing stars.

Image courtesy of Charles Kerton/Iowa State University

The Milky Way region is called CTB 102. It's about 14,000 light years from Earth. It's classified as an HII region, meaning it contains clouds of ionized - charged - hydrogen atoms. And, because of its distance from Earth and the dust and gas in between, it has been difficult to study.

And so, "this region has been very poorly mapped out," Kerton said.

The astronomers describe their first draft of a new, higher-resolution map for the region in a paper recently accepted for publication in the Astrophysical Journal. Lead authors are Sung-ju Kang, a staff scientist at the Korea Astronomy and Space Science Institute and a former graduate student at Iowa State University; and Brandon Marshall, a former Iowa State graduate student who has accepted a faculty position at the University of Nebraska at Kearney.

Other co-authors are Kerton and Youngsik Kim, Minho Choi and Miju Kang, all of the Korea Astronomy and Space Science Institute. Kim is also with the Daejeon Observatory in South Korea.

Kerton said the astronomers used a newly commissioned radio telescope at the Taeduk Radio Astronomy Observatory in South Korea to take high resolution, carbon monoxide observations of the galactic region's molecular clouds.

"That tells us the mass and structure of the material in the interstellar medium there," Kerton said.

The astronomers also compared their radio observations with existing infrared data from the Wide-?eld Infrared Survey Explorer and the Two Micron All Sky Survey. The infrared data allowed them to classify young stars forming within the region's molecular clouds.

The data yield three major observations, the astronomers report in their paper.

First, the astronomers used radio data to describe the physical structure and characteristics of the region's newly mapped molecular clouds - they're fairly large, about 180 light years across with a mass equal to about 100,000 masses of our sun. Next, they used infrared data to determine the young stellar content within the clouds. And finally, they combined the two data streams to study the efficiency of star formation within the galactic region.

They report the star formation efficiency of the entire CTB 102 region is about 5% to 10%, similar to other giant molecular clouds within the galaxy. But, they found one subregion of the clouds with a star formation efficiency of 17% to 37% (depending on how the mass of the subregion is calculated). That's much higher than would be expected for a subregion of its size. They speculate the subregion is the site of a massive cluster of young, developing stars embedded in the molecular cloud.

Why all the star formation in that one subregion? Kerton says that's a question for further study. Maybe, he said, there's something special about the interstellar material in that subregion, which is next to the massive HII region.

"This is our first look at all of this," Kerton said. "The older data were just a few dots, a few pixels. We couldn't isolate this relatively small region of the galaxy."

But now they could - with the help of the new South Korean radio observatory.

The study's high-resolution observations, Kerton said, "are also a demonstration that the telescope is ideal for studying similar regions in our galaxy - there are many other potential targets."

Media Contact

Charles Kerton
kerton@iastate.edu
515-294-2298

 @IowaStateUNews

http://www.iastate.edu 

Charles Kerton | EurekAlert!
Further information:
https://www.news.iastate.edu/news/2019/04/15/firstlook

More articles from Physics and Astronomy:

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>