Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence 'sees' quantum advantages

05.02.2020

Russian researchers from the Moscow Institute of Physics and Technology, Valiev Institute of Physics and Technology, and ITMO University have created a neural network that learned to predict the behavior of a quantum system by "looking" at its network structure. The neural network autonomously finds solutions that are well-adapted toward quantum advantage demonstrations. This will aid researchers in developing new efficient quantum computers. The findings are reported in the New Journal of Physics.

A wide range of problems in modern science are solved through quantum mechanical calculations. Some of the examples are research into chemical reactions and the search for stable molecular structures for medicine, pharmaceutics, and other industries.


AI on the lookout for quantum advantages.

Credit: Alexey Melnikov

The quantum nature of the problems involved makes quantum computations better-suited to them. Classical computations, by contrast, tend to return only bulky approximate solutions.

Creating quantum computers is costly and time-consuming, and the resulting devices are not guaranteed to exhibit any quantum advantage. That is, operate faster than a conventional computer. So researchers need tools for predicting whether a given quantum device will have a quantum advantage.

One of the ways to implement quantum computations is quantum walks. In simplified terms, the method can be visualized as a particle traveling in a certain network, which underlies a quantum circuit.

If a particle's quantum walk from one network node to another happens faster than its classical analogue, a device based on that circuit will have a quantum advantage. The search for such superior networks is an important task tackled by quantum walk experts.

What the Russian researchers did is they replaced the experts with artificial intelligence. They trained the machine to distinguish between networks and tell if a given network will deliver quantum advantage. This pinpoints the networks that are good candidates for building a quantum computer.

The team used a neural network geared toward image recognition. An adjacency matrix served as the input data, along with the numbers of the input and output nodes. The neural network returned a prediction of whether the classical or the quantum walk between the given nodes would be faster.

"It was not obvious this approach would work, but it did. We have been quite successful in training the computer to make autonomous predictions of whether a complex network has a quantum advantage," said Associate Professor Leonid Fedichkin of the theoretical physics department at MIPT.

"The line between quantum and classical behaviors is often blurred. The distinctive feature of our study is the resulting special-purpose computer vision, capable of discerning this fine line in the network space," added MIPT graduate and ITMO University researcher Alexey Melnikov.

With their co-author Alexander Alodjants, the researchers created a tool that simplifies the development of computational circuits based on quantum algorithms. The resulting devices will be of interest in biophotonics research and materials science.

One of the processes that quantum walks describe well is the excitation of photosensitive proteins, such as rhodopsin or chlorophyll. A protein is a complex molecule whose structure resembles a network. Solving a problem that formally involves finding the quantum walk time from one node to another may actually reveal what happens to an electron at a particular position in a molecule, where it will move, and what kind of excitation it will cause.

Compared with architectures based on qubits and gates, quantum walks are expected to offer an easier way to implement the quantum calculation of natural phenomena. The reason for this is that the walks themselves are a natural physical process.

###

Read about an earlier study by the team: Two electrons go on a quantum walk and end up in a qudit

The study reported in this story was financially supported by the Russian government grant 08-08 and by the Russian Foundation for Basic Research grant Nos. 19-52-52012 MHT-a and 17-07-00994-a.

Valiev Institute of Physics and Technology is part of the Russian Academy of Sciences.

Media Contact

Ilyana Zolotareva
shaibakova@phystech.edu
897-777-14699

 @phystech_en

https://mipt.ru/english/ 

Ilyana Zolotareva | EurekAlert!
Further information:
https://mipt.ru/english/news/artificial_intelligence_sees_quantum_advantages
http://dx.doi.org/10.1088/1367-2630/ab5c5e

More articles from Physics and Astronomy:

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

nachricht 10,000 times faster calculations of many-body quantum dynamics possible
21.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>