Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A world-leading UK science project switches on First neutrons created at the ISIS Second Target Station

04.08.2008
The UK’s ISIS Second Target Station Project moved a major step closer to completion today when the first neutrons were created in the ISIS Second Target Station.

After five years of planning and construction, the first neutrons were detected by the Inter instrument at 1308 BST. ISIS, the world-renowned neutron facility at the Rutherford Appleton Laboratory in Oxfordshire, is operated by the Science and Technology Facilities Council.

ISIS, a world leading centre for research in the physical and life sciences, uses neutrons to study materials at the atomic level with a suite of instruments, often described as ‘super-microscopes’. By scattering neutrons off sample materials, scientists can visualise the positions and motions of atoms and make discoveries that have the potential to affect almost every aspect of our lives.

“The first neutrons met all of our technical performance predictions and creating them is a significant milestone in the life of the facility and in the completion of the project,” said Dr Andrew Taylor, Director of ISIS. “The ISIS Second Target Station builds on the success and expertise we have developed over the past 20 years at ISIS and allows us to move further into the areas of soft matter, advanced materials and bioscience. We will be carrying out fundamental research that will shape the technological advances of tomorrow.”

“This is an incredible technical achievement by our staff and demonstrates how everyone can pull together and enable STFC to deliver massive science projects that underpin the long-term future of science and innovation in the UK,“ said Mr Peter Warry, Chairman of the Science and Technology Facilities Council.

“I’m very proud of every single person who has played a part in getting the ISIS Second Target Station project through to this very important milestone.”

The £145 million Second Target Station Project began construction in 2003. It will double the capacity and substantially increase the capability of the facilities already available at ISIS, which serves an international community of over 2,000 scientists.

Neutrons play a vital role in the portfolio of analysis techniques for research on subjects as varied as clean energy and the environment, pharmaceuticals and health care, through to nanotechnology, materials engineering and IT.

“This is tremendous news for the science community, both in the UK and much further afield,” said Professor Andrew Harrison, UK Director at the Institut Laue Langevin, Grenoble, France.

“The ISIS Second Target Station will open research into new types of materials that has not been previously possible at ISIS, and we look forward to a world of new science flowing from the new instrument suite.”

Ian Anderson, Associate Director for Neutron Sciences at Oak Ridge National Laboratory, USA also added his congratulations.

“This is a remarkable achievement by the ISIS team and adds an exciting new dimension to the capabilities of the European neutron scattering toolkit,” he said.

“ISIS is the world’s leading spallation neutron facility and has performed world class outstanding science,” said Professor Masatoshi Arai, Neutron Science Section Leader of the J-PARC accelerator project, Japan. “Adding the second target station is the next great step for ISIS to enhance the ability and extend the reputation of neutron sciences world wide.

“Together with the great scientific environment at ISIS, the skilful design and the mature know-how in neutron technology applied on the second target station will open up unexplored areas for pulsed cold neutron experiments. ISIS can stay as the world-leader even as more powerful spallation neutron sources, such as J-PARC and the US Spallation Neutron Source come online.”

Neutrons are produced at ISIS when bunches of protons travelling at 84% of the speed of light are transferred from the circular ISIS synchrotron accelerator and fired into a tungsten target inside the new target station. This creates billions of neutrons per second that can be used for experiments in seven new instruments.

The full experimental programme at the ISIS Second Target Station begins in autumn this year.

Natalie Bealing | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>