Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A matter-antimatter plasma

04.05.2015

In everyday life matter takes on three different forms or states: solid, liquid, and gas. In addition, dueto its unique properties, a plasma, i.e. an overall almost neutral, ionized gas consisting of positive ions and free electrons, is also customarily considered as the fourth state of matter.

Now, an experimental group from the Queen's University of Belfast in strong collaboration with the Quantum Dynamics Theory Division of the Max Planck Institute for Nuclear Physics has generated a novel form of plasma, exclusively made of electrons and their antimatter counterpart (positrons) in the laboratory [Nature Communications 23.04.2015].

Now, an experimental group from the Queen's University of Belfast in strong collaboration with the Quantum Dynamics Theory Division of the Max Planck Institute for Nuclear Physics has generated a novel form of plasma, exclusively made of electrons and their antimatter counterpart (positrons) in the laboratory [Nature Communications 23.04.2015].


Fig. 1: Experiment vs. theory for electron (a) and positron (b) yield and positron percentage (c). Blue: exp data; red: FLUKA simulation; green: analytical model, scaled by 0.75 in (a) and (b).

Queen's University Belfast / MPIK

The positron is the antiparticle of the electron which shares with the latter all properties except the charge having opposite sign. Electron-positron plasmas are emitted as ultra-relativistic jets in different astrophysical scenarios under extreme conditions, like during gamma-ray bursts.

Thus, they represent a unique tool to test physics in so far unexplored regimes also providing deeper insights about the early stages of the Universe. The feasibility of generating such a unique state of matter in a terrestrial laboratory would then open the possibility of scrutinizing such phenomena and regimes under controlled conditions.

This goal has been now achieved by an experimental team led by Dr. Gianluca Sarri and Prof. Matthew Zepf from the Queen's University of Belfast in strong collaboration with Antonino Di Piazza and Christoph H. Keitel from the Division for Theoretical Quantum Dynamics of the Max Planck Institute for Nuclear Physics in Heidelberg.

The experiment has been performed at the Astra Gemini laser facility at the Rutherford Appleton Laboratory, Oxford, United Kingdom. An ultra-relativistic electron beam, generated in an all-optical setup via laser wake-field acceleration, hit a Pb solid target. As a consequence of the complex interaction of the electron beam with the nuclei and the electrons in the target, an ultra-relativistic electron-positron bunch was observed on the rear side of the solid target, with a fraction of electrons and positrons depending on the target thickness (see Fig. 1).

The density of the bunch was found to be sufficiently high that its skin-depth resulted smaller than the bunch transverse size, allowing for collective, i.e., plasma effects. "Our main task", says Antonino Di Piazza, the first theory author of the publication, "was to identify the main mechanism responsible of the production of the electron-positron bunch and to describe its formation and evolution inside the solid target in the most concise and simple way, in order to shed light on the underlying physics".

The result is a surprisingly simple model, which, among all possible interactions occurring inside the solid target, includes only two fundamental quantum electrodynamical processes: 1) bremsstrahlung by electrons and positrons, and 2) electron-positron pair production by photons, both occurring in the presence of the screened electromagnetic field of the solid target atomic nuclei. Analytical estimations and numerical integrations of the corresponding kinetic equations agree very well with the experimental results on the relative population of electrons and positrons in the generated beam (see in particular the blue dots and the green dashed line in part c of the Fig. 1).

Absolute electron and positron yields were also well predicted by the model. In order to reproduce theoretically also more detailed features of the experimental results, Gianluca Sarri has employed the available fully integrated particle physics Monte-Carlo simulation code FLUKA (red dots in Fig. 1), which among others also includes the electron-electron and electron-positron interactions, atomic scattering and other breaking mechanisms together with high-energy processes like production of muon-antimuon pairs (the next heavier relatives of electrons/positrons among the elementary particles). Those mechanisms reduce the yield compared to the analytical model by about 25%.

Original paper:

Generation of neutral and high-density electron–positron pair plasmas in the laboratory
G. Sarri, K. Poder, J. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M. Vargas, J. Vieira and M. Zepf
Nature Communications 6:6747 (2015); DOI: 10.1038/ncomms7747

Contact:

PD Dr. Antonino Di Piazza
MPI for Nuclear Physics
Phone.: +49 6221 516-161
E-mail: dipiazza@mpi-hd.mpg.de

Dr. Gianluca Sarri
Centre for Plasma Physics
Queen’s University Belfast
Phone: +44 28 9097 3575
E-mail: g.sarri@qub.ac.uk

Weitere Informationen:

http://www.nature.com/ncomms/2015/150423/ncomms7747/full/ncomms7747.html Original paper
http://www.mpi-hd.mpg.de/keitel/dipiazza Group High-Energy Quantum Electrodynamics, MPIK
http://www.qub.ac.uk/research-centres/CentreforPlasmaPhysics Centre for Plasma Physics, Queen's University Belfast
https://www.stfc.ac.uk/CLF/Facilities/Astra/Astra+Gemini/12258.aspx Laser system Gemini, Rutherford Appleton Laboratory

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>