Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A laser for penetrating waves

19.08.2019

Research team develops a new principle to generate terahertz radiation

The "Landau-level laser" is an exciting concept for an unusual radiation source. It has the potential to efficiently generate so-called terahertz waves, which can be used to penetrate materials as well as for future data transmission. So far, however, nearly all attempts to make such a laser reality have failed.


An international research team has been able to show that it is relatively easy to generate terahertz waves with an alloy of mercury, cadmium and tellurium. To examine the behavior of the electrons in the material, the physicists use the free-electron laser FELBE at HZDR. Circularly polarized terahertz pulses (orange spiral) excite the electrons (red) from the lowest to the next higher energy level (parabolic shell). The energy gap of these so-called Landau levels can be adjusted with the help of a magnetic field.

Credit: HZDR / Juniks

An international team of researchers has now taken an important step in the right direction: In the journal Nature Photonics (DOI: 10.1038/s41566-019-0496-1), they describe a material that generates terahertz waves by simply applying an electric current. Physicists from the German research center Helmholtz-Zentrum Dresden-Rossendorf (HZDR) played a significant role in this project.

Like light, terahertz waves are electromagnetic radiation, in a frequency range between microwaves and infrared radiation. Their properties are of great technological and scientific interest, as they allow fundamental researchers to study the oscillations of crystal lattices or the propagation of spin waves.

Simultaneously "terahertz waves are of interest for technical applications because they can penetrate numerous substances that are otherwise opaque, such as clothing, plastics and paper," HZDR researcher Stephan Winnerl explains.

Terahertz scanners are already used today for airport security checks, detecting whether passengers are concealing dangerous objects under their clothing - without having to resort to harmful X-rays.

Because terahertz waves have a higher frequency than the radio waves we use today, they could also be harnessed for data transmission one day. Current WLAN technology, for instance, operates at frequencies of two to five gigahertz. Since terahertz frequencies are about a thousand times higher, they could transmit images, video, and music much faster, albeit across shorter distances.

However, the technology is not yet fully developed. "There has been a lot of progress in recent years," Winnerl reports. "But generating the waves is still a challenge - experts speak of a veritable terahertz gap." A particular issue is the lack of a terahertz laser that is compact, powerful, and tunable at the same time.

Flexible frequencies

Laser light is generated by the electrons in the laser material. According to the quantum effect, energized electrons emit light, but they cannot absorb just any random amount of energy, only certain portions. Accordingly, light is also emitted in portions, in a specific color and as a focused beam. For some time now, experts have set their sights on a specific concept for a terahertz laser: the "Landau-level laser". It is special because it can use a magnetic field to flexibly adjust the electrons' energy levels. These levels, in turn, determine the frequencies that are emitted by the electrons, which makes the laser tunable - a huge advantage for many scientific and technical applications.

There is just one issue: Such a laser does not exist yet. "So far, the problem has been that the electrons pass their energy on to other electrons instead of emitting them as the desired light waves," Winnerl explains. Experts call this physical process the "Auger effect". To their chagrin, this phenomenon also occurs in graphene, a material that they deemed particularly promising for a "Landau-level laser". This two-dimensional form of carbon showed strong Auger scattering in HZDR experiments.

A question of material

The research team therefore tried another material: a heavy metal alloy of mercury, cadmium, and tellurium (HgCdTe) that is used for highly sensitive thermal imaging cameras, among other things. The special feature of this material is that its mercury, cadmium, and tellurium contents can be very precisely chosen, which makes it possible to fine-tune a certain property that experts call the "band gap".

As a result, the material showed properties similar to graphene, but without the issue of strong Auger scattering. "There are subtle differences to graphene that avoid this scattering effect," says Stephan Winnerl. "Put simply, the electrons can't find any other electrons that could absorb the right amount of energy." Therefore, they have no choice but to get rid of their energy in the form that the scientists want: terahertz radiation.

The project was an international team effort: Russian partners had prepared the HgCdTe samples, which the project's lead group in Grenoble then analyzed. One of the pivotal investigations took place in Dresden-Rossendorf: Using the free-electron laser FELBE, experts fired strong terahertz pulses at the sample and were able to observe the electrons' behavior in temporal resolution. The result: "We noticed that the Auger effect that we had observed in graphene had actually disappeared," Winnerl is happy to report.

LED for Terahertz

Lastly, a work group in Montpellier observed that the HgCdTe compound actually emits terahertz waves when electric current is applied. By varying an additional magnetic field of only about 200 millitesla, the experts were able to vary the frequency of the emitted waves in a range of one to two terahertz - a tunable radiation source. "It's not quite a laser yet, but rather like a terahertz LED," Winnerl describes. "But we should be able to extend the concept to a laser, even though it will take some effort." And that's exactly what the French partners want to tackle next.

There is one limiting factor, however: Up to now, the principle has only worked when cooled to very low temperatures, just above absolute zero. "This is certainly a hindrance for everyday applications," Winnerl summarizes. "But for use in research and in certain high-tech systems, we should be able to make it work with this kind of cooling."

###

Publication:

D.B. But, M. Mittendorff, C. Consejo, F. Teppe, N.N. Mikhailov, S.A. Dvoretskii, C. Faugeras, S. Winnerl, M. Helm, W. Knap, M. Potemski, M. Orlita: Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons, in Nature Photonics, 2019 (DOI: 10.1038/s41566-019-0496-1)

More information:

Dr. Stephan Winnerl
Institute of Ion Beam Physics and Materials Research at the HZDR
Phone: +49 351 260-3522 | Mail: s.winnerl@hzdr.de

Media contact:

Simon Schmitt | Science editor
Phone: +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden / Germany | http://www.hzdr.de

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs - as an independent German research center - research in the fields of energy, health, and matter. We focus on answering the following questions:

  • How can energy and resources be utilized in an efficient, safe, and sustainable way?
  • How can malignant tumors be more precisely visualized, characterized, and more effectively treated?
  • How do matter and materials behave under the influence of strong fields and in smallest dimensions?

To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources.

HZDR is a member of the Helmholtz Association and has five sites (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,200 members of staff, of whom about 500 are scientists, including 150 Ph.D. candidates.

Media Contact

Simon Schmitt
s.schmitt@hzdr.de
49-351-260-3400

 @HZDR_Dresden

http://www.hzdr.de/db/Cms?pNid=

Simon Schmitt | EurekAlert!
Further information:
http://www.hzdr.de/presse/terahertz_laser
http://dx.doi.org/10.1038/s41566-019-0496-1

More articles from Physics and Astronomy:

nachricht Initial repulsion does not rule out subsequent attraction
13.09.2019 | Universität Regensburg

nachricht NASA's Hubble finds water vapor on habitable-zone exoplanet for 1st time
12.09.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>