A gassy mystery: Researchers discover surprising exoplanetary atmosphere

The finding is the latest advance in the quest to measure Earth-like planets that could possibly host signs of life, which researchers expect to find in the next few years.

“GJ 436b is the smallest exoplanet whose direct light we've been able to measure,” said Kevin Stevenson, the University of Central Florida's first planetary sciences doctoral student and lead author of the study, which will be published Thursday, April 22, in Nature.

The results are surprising. Neptune-sized planets as hot as 800 Kelvin — about 1,000 degrees Fahrenheit — should contain high levels of methane and very little carbon monoxide, according to standard chemistry.

Instead, the researchers found 7,000 times less methane than expected and plenty of carbon monoxide, which suggests that scientists should be more flexible in their theories about the atmospheres of similar planets.

“This is unexpected,” said UCF Physics Professor Joseph Harrington. “It's like dipping bread into beaten eggs, frying it and getting oatmeal.” Stevenson and Harrington worked alongside colleagues from UCF, the Massachusetts Institute of Technology, Columbia University and NASA.

Using NASA's Spitzer Space Telescope, the UCF team measured the dimming of light as GJ 436b passed behind its star and re-emerged. The difference in the two light levels — measured six times at different infrared wavelengths — represents the light emitted by the planet itself.

The resulting data were used to figure out what molecules make up the planet's atmosphere. To do this, MIT Planetary Sciences Professor Sara Seager and postdoctoral researcher Nikku Madhusudhan simulated millions of chemical mixes under the planet's conditions to find the ones that best matched the UCF data.

The unexpected result puts GJ 436b in good company. “If you were looking at Earth from afar, you would be surprised to see oxygen gas in its atmosphere,” Harrington said. “Oxygen reacts with surface materials and other gases, so you need something that continually produces it.”

That something is Earth's abundant plant life. Oxygen is a “biosignature,” or an indicator of life, Harrington says.

Using similar techniques to that of the UCF study, astronomers will seek oxygen and other biosignatures on habitable worlds that they soon expect to discover.

“We'll keep pushing the frontier, and this is just one more step in that direction,” Stevenson said.

Media Contact

Christine Dellert EurekAlert!

More Information:

http://www.ucf.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors