Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 15-Minute Genome 2009 Industrial Physics Forum features faster, cheaper genome sequencing

29.07.2009
In the race for faster, cheaper ways to read human genomes, Pacific Biosciences is hoping to set a new benchmark with technology that watches DNA being copied in real time. The device is being developed to sequence DNA at speeds 20,000 times faster than second-generation sequencers currently on the market and will ultimately have a price tag of $100 per genome.

Chief Technology Officer Stephen Turner of Pacific Biosciences will discuss Single Molecule Real-Time (SMRT) sequencing, due to be released commercially in 2010, at the 2009 Industrial Physics Forum, a component of the 51st Annual Meeting of American Association of Physicists in Medicine, which takes place from July 26 - 30 in Anaheim, California

A decade ago, it took Celera Genomics and the Human Genome Project years to sequence complete human genomes. In 2008, James Watson's entire genetic code was read by a new generation of technology in months. SMRT sequencing aims to eventually accomplish the same feat in minutes.

The method used in the Human Genome Project, Sanger sequencing, taps into the cell's natural machinery for replicating DNA. The enzyme DNA polymerase is used to copy strands of DNA, creating billions of fragments of varying length. Each fragment -- a chain of building blocks called nucleotides -- ends with a tiny fluorescent molecule that identifies only the last nucleotide in the chain. By lining these fragments up according to length, their glowing tips can be read off like letters on a page.

Instead of inspecting DNA copies after polymerase has done its work, SMRT sequencing watches the enzyme in real time as it races along and copies an individual strand stuck to the bottom of a tiny well. Every nucleotide used to make the copy is attached to its own fluorescent molecule that lights up when the nucleotide is incorporated. This light is spotted by a detector that identifies the color and the nucleotide -- A, C, G, or T.

By repeating this process simultaneously in many wells, the technology hopes to bring about a substantial boost in sequencing speed. "When we reach a million separate molecules that we're able to sequence at once … we'll be able to sequence the entire human genome in less than 15 minutes," said Turner.

The speed of the reaction is currently limited by the ability of the detector to keep up with the polymerase. The first commercial instrument will operate at three to five bases per second, and Turner reports that lab tests have achieved 10 bases per second. The polymerase has the potential to go much faster, up to hundreds of bases per second. "To push past 50 bases per second, we will need brighter fluorescent reporters or more sensitive detection," says Turner.

The device also has the potential to reduce the number of errors made in DNA sequencing. Current technologies achieve an accuracy of 99.9999 percent (three thousand errors in a genome of three billion base pairs). "For cancer, you need to be able to spot a single mutation in the genome," said Turner. Because the errors made by SMRT sequencing are random -- not systematically occurring at the same spot -- they are more likely to disappear as the procedure is repeated.

RELATED LINKS

Main Meeting Web site: http://www.aapm.org/meetings/09AM/
Search Meeting Abstracts: http://www.aapm.org/meetings/09AM/prsearch.asp?mid=42
Meeting program: http://www.aapm.org/meetings/09AM/MeetingProgram.asp
AAPM home page: http://www.aapm.org
Background article about how medical physics has revolutionized medicine: http://www.newswise.com/articles/view/538208/

ABOUT THE 2009 INDUSTRIAL PHYSICS FORUM

For each of the past 51 years, the Industrial Physics Forum has brought together industry, academic, and government leaders to examine applications of scientific research to emerging industrial R&D activities. This year's IPF is themed, "Frontiers in Quantitative Imaging for Cancer Detection and Treatment" and will be held in conjunction with the 51st Annual Meeting of the American Association of Physicists in Medicine (AAPM) on July 26 - 30, 2009 in Anaheim, CA. Embedded into the AAPM Scientific Program, the IPF sessions will be on Monday and Tuesday, July 27 - 28. During each IPF, a special session is dedicated to Frontiers in Physics, addressing the most exciting research going on today, regardless of field. In Anaheim, there will be speakers on next-generation DNA sequencers, on opto-genetics for brain imaging, and on how accelerator and particle physics enable some of the latest medical applications.

ABOUT MEDICAL PHYSICISTS

If you ever had a mammogram, ultrasound, X-ray, MRI, PET scan, or known someone treated for cancer, chances are reasonable that a medical physicist was working behind the scenes to make sure the imaging procedure was as effective as possible. Medical physicists help to develop new imaging techniques, improve existing ones, and assure the safety of radiation used in medical procedures in radiology, radiation oncology and nuclear medicine. They collaborate with radiation oncologists to design cancer treatment plans. They provide routine quality assurance and quality control on radiation equipment and procedures to ensure that cancer patients receive the prescribed dose of radiation to the correct location. They also contribute to the development of physics intensive therapeutic techniques, such as the stereotactic radiosurgery and prostate seed implants for cancer to name a few. The annual AAPM meeting is a great resource, providing guidance to physicists to implement the latest and greatest technology in a community hospital close to you.

ABOUT AAPM

The American Association of Physicists in Medicine (AAPM) is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal (Medical Physics), technical reports, and symposium proceedings. See: www.aapm.org.

Devin Powell | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>