Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual Sailing Simulator Shows Key Role of Recreation in Spinal Cord Injury Rehabilitation

21.11.2013
Kennedy Krieger Institute researchers find therapeutic benefits of virtual sailing

Researchers at the Kennedy Krieger Institute announced today the results of a pilot study demonstrating use of a virtual therapeutic sailing simulator as an important part of rehabilitation following a spinal cord injury (SCI).

Published in the American Journal of Physical Medicine & Rehabilitation, findings show that using a hands-on sailing simulator over a 12-week period helped participants safely learn sailing skills in a controlled environment, ultimately improving their quality of life by gaining the ability to participate in a recreational sport.

For many individuals living with paralysis, participation in recreational sports may seem impossible or even unimportant. This study is one of the first to scientifically quantify the positive impact of therapeutic sailing following a spinal cord injury, including a significant increase in overall self-confidence and sense of accomplishment among participants.

“Sports and recreation are a very important component of the rehabilitation process, not only for general physical well-being, but for improving overall quality of life for patients who have sustained spinal cord injuries,” says Dr. Albert Recio, study author and physician in the International Center for Spinal Cord Injury at Kennedy Krieger Institute. “We are very pleased with the results of this unique training program and hope that this type of recreational tool can also help in the rehabilitation of patients with other disabilities.”

Study participants had chronic spinal cord injuries that occurred more than six months prior to beginning use of the Virtual Sailing VSail-Trainer, the first sailing simulator available for people with paralysis. The stationary, motorized sailboat cockpit features specialized software that enables patients to navigate the boat around a virtual course in the same way as an actual sailboat in the water.

Electronic sensors give the participant real-time feedback that matches their movements and allows them to control wind strength and water conditions. Participants had no previous sailing experience and worked with the sailing simulator for one hour per week for 12 weeks.

During each session, a therapist assessed several physical and neurological indicators and compared the results to measurements taken prior to beginning the training program. All participants completed a questionnaire at the beginning and end of the study designed to evaluate their quality of life and self-esteem.

Results showed that:
All participants demonstrated rapid and substantial improvement in their sailing scores.
All patients showed a significant positive increase in overall quality of life, including increased self-confidence and sense of accomplishment.

Following completion of the training program, all subjects were able to successfully sail and perform specific maneuvers on the water at a sailing center in Baltimore, Md.

The results of this study provide preliminary evidence that the use of the Virtual Sailing’s VSail-Training technology in a safe, controlled environment enables individuals with SCI to learn the skills required to sail on the water and can result in quality of life improvements. Of note, the subjects were able to participate in a sports activity with their respective family members and experienced a sense of optimism about the future.

This pilot study involved only people with SCI; however, in principle this approach could be used with people with a wide range of injuries including loss of limbs and brain injury. Additional research will be required to develop the relevant protocols.

This study was supported by the Kennedy Krieger Institute‘s International Center for Spinal Cord Injury, the Johns Hopkins University and the University of Melbourne, Australia.

About the International Center for Spinal Cord Injury

The International Center for Spinal Cord Injury (ICSCI) at Kennedy Krieger Institute was founded in 2005 on the philosophy that individuals with paralysis can always hope for recovery of sensation, function, mobility, and independence, months and even years after injury. ICSCI is one of the first facilities in the world to combine innovative research with a unique focus on restoration and rehabilitation for children and adults with chronic paralysis. More than 2,000 patients from the U.S. and around the world have received treatment at the Center.

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD, serves more than 20,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis.

Media Contact:

Megan Feffer
202-587-2581
mfeffer@spectrumscience.com

Megan Feffer | EurekAlert!
Further information:
http://www.kennedykrieger.org

Further reports about: Simulator injury quality of life spinal spinal cord spinal cord injuries

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>