Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study reveals potential route to bladder cancer diagnostics, treatments

12.02.2014
Researchers at the UNC Lineberger Comprehensive Cancer Center found that bladder cancer subtypes are genetically similar to breast cancer subtypes.

Researchers at the UNC School of Medicine conducted a comprehensive genetic analysis of invasive bladder cancer tumors to discover that the disease shares genetic similarities with two forms of breast cancer.

The finding is significant because a greater understanding of the genetic basis of cancers, such as breast cancers, has in the recent past led to the development of new therapies and diagnostic aids.

Bladder cancer, which is the fourth most common malignancy in men and ninth in women in the United States, claimed more than 15,000 lives last year.

The analysis of 262 bladder cancer tumors, published online in the Proceedings of the National Academy of Sciences, revealed that the invasive form of the disease can be classified into two distinct genetic subtypes – basal-like and luminal – which were shown to be highly similar to the basal and luminal subtypes of breast cancer first described by Charles Perou, PhD, the May Goldman Shaw Distinguished Professor of Molecular Oncology at UNC Lineberger.

“It will be particularly interesting to see whether the bladder subtypes, like the breast subtypes, are useful in stratification for therapy,” said lead author William Kim, MD, a researcher at the UNC Lineberger Comprehensive Cancer Center and associate professor in the departments of genetics and medicine at UNC.

Mapping genetic signaling pathways of breast cancer subtypes has led to the development of drugs to treat patients and diagnostic aids that help physicians determine the best course of therapy for patients. Because the identified bladder cancer subtypes share many of the same genetic signaling pathways of breast cancer, researchers hope that the identification of the genetic subtypes can lead to similar advances.

“Currently there are no approved targeted therapies for bladder cancer,” said lead author Jeffrey Damrauer, graduate student in the Curriculum of Genetics and Molecular Biology at the UNC School of Medicine. “Our hope is that the identification of these subtypes will aid in the discovery of targetable pathways that will advance bladder cancer treatment.”

The study also revealed a possible answer to why women diagnosed with bladder cancer have overall poorer outcomes compared to males. Analysis showed that female patients had a significantly higher incidence of the deadlier basal-like tumors. But researchers said that more research is needed before a definite link between the subtype and survival rate can be confirmed.

Dr. Kim’s lab has developed a gene map – BASE47 – that proved successful as a prognostic aid when applied to the tumor samples in the study. The PAM50 genetic test, a similar genetic map developed in the Perou lab, was recently approved as a clinical diagnostic tool by the FDA.

Additional LCCC members contributing to this work are Katherine Hoadley, PhD; David Chism, MD; Cheng Fan; Christopher Tiganelli, MD; Sara Wobker, MD; Jen Jen Yeh, MD; Matthew Milowsky, MD; and Joel Parker, PhD.

This work was supported by National Institutes of Health Grant R01 CA142794 and Integrative Vascular Biology Training Grant T32-HL069768. Dr. Kim is a Damon Runyon Merck Clinical Investigator. Dr. Kim and Damrauer are inventors on the patent for the BASE47.

William Davis | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>