Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.S.-Ethiopian Effort Will Monitor Malaria Risk

10.11.2010
Controlling malaria in part of Africa may become easier thanks to an international partnership between U.S. researchers and colleagues in Ethiopia that uses new tools to monitor risk.

Associate professor Michael Wimberly of South Dakota State University’s Geographic Information Science Center of Excellence said the work builds on SDSU’s experience using geospatial tools to study a different mosquito-borne illness in the United States. Wimberly and his SDSU colleagues have carried out several studies in recent years studying West Nile virus outbreaks in South Dakota and the surrounding region, where the virus that causes the disease is spread largely by a mosquito called Culex tarsalis.

Malaria is also a mosquito-borne disease. The parasite that causes the disease is spread by the bite of the female Anopheles mosquito. Malaria is found in about 109 countries in the Americas, Africa, and Asia. The World Health Organization estimated that as many as 1 million people died of malaria in 2008. Most fatalities are in children younger than 5. The vast majority of cases are in sub-Saharan Africa.

Wimberly said some of the techniques that SDSU geographers use to study West Nile virus can be deployed to also study malaria in Africa.

“Malaria is a major public health problem in Ethiopia, where outbreaks in highland regions can be affected by climatic variability, land use change, and seasonal movements of human populations,” Wimberly said. “We can apply geospatial technologies, including geographic information systems, or GIS, and satellite remote sensing to forecast the spatial and temporal patterns of malaria risk — where and when outbreaks are likely to occur.”

Wimberly said the plan depends on a multidisciplinary team that links scientists who have knowledge of geospatial data and techniques with public health practitioners who have a detailed understanding of local needs. Wimberly and his colleagues have developed such a partnership involving the Geographic Information Science Center of Excellence or GIScCE at South Dakota State University, the U.S. Geological Survey’s EROS Center in Sioux Falls, and the Anti-Malaria Association or AMA, a non-governmental organization located in Addis Ababa, Ethiopia.

“In this partnership, the role of the GIScCE is to develop models for ecological forecasting of malaria risk using satellite remote sensing, and the role of the AMA is to facilitate data collection, model validation, and implementation of the resulting products,” Wimberly said.

The partnership’s preliminary results have documented relationships between satellite-derived environmental metrics and malaria incidence in the Ethiopian highlands, confirming the feasibility of malaria risk mapping and forecasting.

“We have also developed other GIS data products related to land use, health facility accessibility, transportation, and population characteristics that may be useful for enhancing malaria prevention efforts,” Wimberly said. “A key technical challenge in Ethiopia has been implementing Internet-based mapping technologies in an environment of low connectivity and low bandwidth. Therefore, another important aspect of the partnership is developing effective, low-cost, and easy-to-use methods for providing public health practitioners with access to digital map products.”

The SDSU scientists’ latest visit to Ethiopia in summer 2010 has spawned a subproject that will focus on providing baseline geographic data to health centers in Ethiopia’s Amhara region.

“We’re going to pick 10 woreda, or districts, in the Amhara region and collaborate with a GIS consulting firm in Ethiopia to generate a number of paper map products for them,” Wimberly said. This low-tech exercise will help researchers learn what types of maps are most useful for malaria prevention and control.

The lessons learned and the tools developed through the ongoing collaboration between GIScCE and AMA can help to inform and enhance other global health partnership efforts, he added.

In addition to Wimberly, others involved in the project include Alemayehu Midekisa, Ting-Wu Chuang, and Geoffrey Henebry, all of the Geographic Information Science Center of Excellence at South Dakota State University; Gabriel Senay of the USGS Earth Resources Observation and Science Center, or EROS Center, in Sioux Falls, S.D.; and Abere Mihretie and Paulos Semunigus, both of the Anti-Malaria Association, Addis Ababa, Ethiopia.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: AMA EROS Ethiopia GIS GIScCE Malaria Nile Delta SDSU Science TV West Nile virus anti-malaria land use public health remote sensing

More articles from Health and Medicine:

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>