Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tools for more accurate dosage of drugs against HIV/AIDS and malaria

06.03.2009
A doctoral thesis presented at the Sahlgrenska Academy, University of Gothenburg, Sweden, shows that it is possible to describe and quantify the relationships between dose, concentration and effectiveness of several drugs against HIV/AIDS and malaria. The method may allow improved treatment and fewer undesired effects for patients with these diseases.

Registered pharmacist Daniel Röshammar has in his thesis studied the optimal use of certain pharmaceutical substances that are used to combat HIV/AIDS and malaria. He has analysed, among other things, data from 121 healthy volunteers from Uganda using a mathematical model known as a pharmacometric model.

The study showed that both sex and genetic differences between individuals influence the way in which the body metabolises efavirenz, which is part of some anti-HIV/AIDS drugs. Other studies have focussed on 74 people from Zimbabwe with HIV/AIDS, and showed that a reduction in the daily dose of efavirenz from 600 mg to 400 mg can reduce the risk of undesired effects in those affected who have a genetically conditioned poorer ability to catabolise the substance.

"Many HIV/AIDS patients are treated with efavirenz, and they should be genetically tested using a blood test before deciding on a dose. This is particularly important in Africa, where the fraction of patients with a poorer catabolic ability is greater than it is elsewhere", says Daniel Röshammar.

Repeated measurements of the drug concentrations and virus levels in 239 previously untreated Scandinavian patients with HIV/AIDS allowed a similar model to be used in order to study the antiretroviral effects of anti-HIV/AIDS drugs. Calculations showed that treatment in which efavirenz was combined with other pharmaceutical substances was more effective than two other frequently used combination treatments.

"It may be possible in the future to use the model to predict when the treatment will loose its effectiveness for an individual patient, and explain why", says Daniel Röshammar.

Further work involved using a model to describe how the catabolism of the anti-malarial drug artemisinin increases and the concentration of the drug decreases when patients take this drug. When artemisinin was given to 97 patients in Vietnam without other drugs, approximately 37% of them were affected by recrudescent malaria. The model showed that this could not be explained solely by low drug concentrations. Another anti-malarial drug, piperaquine, may be a suitable partner for artemisinin in the treatment of malaria. An investigation of 12 Vietnamese study subjects, however, allowed scientists to estimate that the levels of piperaquine that remain in the body are too low to be effective, and this increases the risk that the malaria parasite will develop resistance.

"Research shows that pharmacometric models can be adapted to patient data in order to understand the relationships between drug concentration, effectiveness and the progress of disease, while at the same time taking into consideration differences between patients such as, for example, weight, age, sex, genetic factors, other diseases and other drugs. We expect that these tools will be important in the fight against HIV/AIDS and malaria", says Daniel Röshammar.

The thesis has been written by:
Registered pharmacist Daniel Röshammar, telephone: +46 733 924602, e-mail: daniel.roshammar@pharm.gu.se
Supervisor:
Professor Michael Ashton, telephone: +46 31 786 3412, e-mail: michael.ashton@pharm.gu.se
The thesis has been presented for the degree of Doctor of Philosophy (Medicine) at the Sahlgrenska Academy, Institute of Neuroscience and Physiology

Title of the thesis: Applied Population Pharmacokinetic/Pharmacodynamic Modeling of Antiretroviral and Antimalarial Drug Therapy

Press information: Ulrika Lundin
Public relations officer, Sahlgrenska Academy at the University of Gothenburg
Telephone: +46 31 786 3869, +46 70-775 8851
e-mail: ulrika.lundin@sahlgrenska.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/19044 -

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>