Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking short walking breaks found to reverse negative effects of prolonged sitting

08.09.2014

An Indiana University study has found that three easy -- one could even say slow -- 5-minute walks can reverse harm caused to leg arteries during three hours of prolonged sitting.

Sitting for long periods of time, like many people do daily at their jobs, is associated with risk factors such as higher cholesterol levels and greater waist circumference that can lead to cardiovascular and metabolic disease. When people sit, slack muscles do not contract to effectively pump blood to the heart.

Blood can pool in the legs and affect the endothelial function of arteries, or the ability of blood vessels to expand from increased blood flow.

This study is the first experimental evidence of these effects, said Saurabh Thosar, a postdoctoral researcher at Oregon Health & Science University, who led the study as a doctoral candidate at IU's School of Public Health-Bloomington.

"There is plenty of epidemiological evidence linking sitting time to various chronic diseases and linking breaking sitting time to beneficial cardiovascular effects, but there is very little experimental evidence," Thosar said. "We have shown that prolonged sitting impairs endothelial function, which is an early marker of cardiovascular disease, and that breaking sitting time prevents the decline in that function."

The researchers were able to demonstrate that during a three-hour period, the flow-mediated dilation, or the expansion of the arteries as a result of increased blood flow, of the main artery in the legs was impaired by as much as 50 percent after just one hour. The study participants who walked for 5 minutes each hour of sitting saw their arterial function stay the same -- it did not drop throughout the three-hour period. Thosar says it is likely that the increase in muscle activity and blood flow accounts for this.

"American adults sit for approximately eight hours a day," he said. "The impairment in endothelial function is significant after just one hour of sitting. It is interesting to see that light physical activity can help in preventing this impairment."

The study involved 11 non-obese, healthy men between the ages of 20-35 who participated in two randomized trials. In one trial they sat for three hours without moving their legs. Researchers used a blood pressure cuff and ultrasound technology to measure the functionality of the femoral artery at baseline and again at the one-, two- and three-hour mark.

In the second trial, the men sat during a three-hour period but also walked on a treadmill for 5 minutes at a speed of 2 mph at the 30-minute mark, 1.5-hour mark and 2.5-hour mark. Researchers measured the functionality of the femoral artery at the same intervals as in the other trial.

###

The study "Effect of Prolonged Sitting and Breaks in Sitting Time on Endothelial Function" will be published in Medicine & Science in Sports & Exercise, the official journal of the American College of Sports Medicine, and is appearing online early.

For a copy of the paper or to speak with Thosar, contact him at thosar@ohsu.edu or Tracy James at 812-855-4507 or traljame@iu.edu.

The study was supported by the American College of Sports Medicine Foundation Doctoral Research Grant and by Indiana University. Co-authors include Sylvanna L. Bielko, Jeanne D. Johnston and Janet P. Wallace, all from the Department of Kinesiology in the IU School of Public Health-Bloomington; and Kieren J. Mather, IU School of Medicine. The study was conducted at the Clinical Exercise Physiology lab headed by Janet P. Wallace.

Saurabh Thosar | Eurek Alert!
Further information:
http://www.ohsu.edu

Further reports about: Department Medicine Physiology Sports activity blood cholesterol evidence function

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>