Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight plus lime juice makes drinking water safer

18.04.2012
Looking for an inexpensive and effective way to quickly improve the quality of your drinking water?

According to a team of researchers from the Johns Hopkins Bloomberg School of Public Health and the Johns Hopkins School of Medicine, sunlight and a twist of lime might do the trick. Researchers found that adding lime juice to water that is treated with a solar disinfection method removed detectable levels of harmful bacteria such as Escherichia coli (E. coli) significantly faster than solar disinfection alone. The results are featured in the April 2012 issue of American Journal of Tropical Medicine and Hygiene.

"For many countries, access to clean drinking water is still a major concern. Previous studies estimate that globally, half of all hospital beds are occupied by people suffering from a water-related illness," said Kellogg Schwab, PhD, MS, senior author of the study, director of the Johns Hopkins University Global Water Program and a professor with the Bloomberg School's Department of Environmental Health Sciences. "The preliminary results of this study show solar disinfection of water combined with citrus could be effective at greatly reducing E. coli levels in just 30 minutes, a treatment time on par with boiling and other household water treatment methods. In addition, the 30 milliliters of juice per 2 liters of water amounts to about one-half Persian lime per bottle, a quantity that will likely not be prohibitively expensive or create an unpleasant flavor."

In low-income regions, solar disinfection of water is one of several household water treatment methods to effectively reduce the incidence of diarrheal illness. One method of using sunlight to disinfect water that is recommended by the United Nations Children's Fund (UNICEF) is known as SODIS (Solar water Disinfection). The SODIS method requires filling 1 or 2 L polyethylene terephthalate (PET plastic) bottles with water and then exposing them to sunlight for at least 6 hours. In cloudy weather, longer exposure times of up to 48 hours may be necessary to achieve adequate disinfection. To determine if one of the active constituents in limes known as psoralenes could enhance solar disinfection of water, Schwab and Alexander Harding, lead author of the study and a medical student at the Johns Hopkins School of Medicine, looked at microbial reductions after exposure to both sunlight and simulated sunlight. The researchers filled PET plastic bottles with dechlorinated tap water and then added lime juice, lime slurry, or synthetic psoralen and either E. coli, MS2 bacteriophage or murine norovirus. Researchers found that lower levels of both E. coli and MS2 bacteriophage were statistically significant following solar disinfection when either lime juice or lime slurry was added to the water compared to solar disinfection alone. They did find however, that noroviruses were not dramatically reduced using this technique, indicating it is not a perfect solution.

"Many cultures already practice treatment with citrus juice, perhaps indicating that this treatment method will be more appealing to potential SODIS users than other additives such as TiO2 [titanium dioxide] or H2O2[hydrogen peroxide]," suggest the authors of the study. However, they caution, "additional research should be done to evaluate the use of lemon or other acidic fruits, as Persian limes may be difficult to obtain in certain regions."

"Using Limes and Synthetic Psoralens to Enhance Solar Disinfection of Water (SODIS): A Laboratory Evaluation with Norovirus, Escherichia coli and MS2," was written by Alexander S. Harding and Kellogg J. Schwab.

The research was supported in part by the Osprey Foundation of Maryland, The Johns Hopkins University Global Water Program, the Johns Hopkins University School of Medicine Dean's Funding for Summer Research and the Johns Hopkins University School of Medicine Scholarly Concentrations.

Natalie Wood-Wright | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht Novel anti-cancer nanomedicine for efficient chemotherapy
17.09.2019 | University of Helsinki

nachricht Researchers have identified areas of the retina that change in mild Alzheimer's disease
16.09.2019 | Universidad Complutense de Madrid

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>