Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun-damaged skin responds well to laser treatment

21.10.2008
Researchers at the University of Michigan Health System Department of Dermatology have found scientific evidence that the appearance of sun-damaged skin may be improved by treatment with a topical product that increases the skin's sensitivity to light, followed by laser therapy.

In the new study, participants whose skin was sun-damaged – or photodamaged – were treated with a topical photosensitizer called 5-aminolevulinic acid (5-ALA) and then with a pulsed dye laser. This type of treatment, known as photodynamic therapy, increased collagen levels in the skin and also produced other skin changes that are known to improve its appearance.

The results also suggest that skin with the worst sun damage may respond particularly well to this treatment.

"This is new scientific evidence that photodynamic therapy may in fact be a useful tool to improve the appearance of the skin. This type of therapy has been performed in clinical practice for the past few years, but we've never had detailed molecular evidence for why it may work," says lead author Jeffrey S. Orringer, M.D., associate professor of dermatology at the U-M Health System and director of U-M's Cosmetic Dermatology and Laser Center. The study appears in the October issue of the Archives of Dermatology.

The study looked at 24 adults, ages 54 to 83, all of whom had significant photodamage on the forearm skin. They received a three-hour application of 5-ALA followed by pulsed dye laser therapy. Researchers examined biopsies taken before and at several times after the treatments, and they recorded the molecular changes in the participants' skin at various stages.

Among many other molecular changes, levels of the proteins procollagen I and procollagen III increased after treatment. For instance, one month after treatment, levels of procollagen I peaked with an increase of 2.65 times the pre-treatment levels. Procollagen III peaked one month after treatment with an increase of 3.32 times the pre-treatment levels. Other protein levels molecular markers also increased.

The study represents the latest example of U-M's human appearance research program's unraveling of the mechanisms by which popular treatments improve the appearance of the skin, Orringer notes.

The group has studied the treatment of sun-damaged skin with estrogen, the science behind wrinkle treatments, the effects of smoking on aging skin, and more.

Photodynamic therapy has been used as a treatment for precancerous lesions called actinic keratoses and for some types of skin cancer, but little scientific research has been conducted about its use in appearance-oriented dermatology.

Future studies are needed to gauge whether the improvements shown in the forearm skin in this study can be replicated on facial skin.

Katie Vloet | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>