Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study sheds light on cancer-protective properties of milk

04.10.2012
Findings reported in the Journal of Dairy Science

Amsterdam, The Netherlands, October 3, 2012 – Milk consumption has been linked to improved health, with decreased risks of diabetes, metabolic syndrome, and colon cancer. A group of scientists in Sweden found that lactoferricin4-14 (Lfcin4-14), a milk protein with known health effects, significantly reduces the growth rate of colon cancer cells over time by prolonging the period of the cell cycle before chromosomes are replicated.

In a new study, investigators report that treatment with Lfcin4-14 reduced DNA damage in colon cancer cells exposed to ultraviolet (UV) light. Their results are published in the October issue of the Journal of Dairy Science®.

"We previously hypothesized that the prolongation of the cell cycle in colon cancer cells as a result of Lfcin4-14 treatment may give the cells extra time for DNA repair," says one of the lead investigators, Professor Stina Oredsson, of the Department of Biology at the University of Lund, Sweden. "Indeed, UV light-induced damage was decreased in colon cancer cells treated with Lfcin4-14 compared with controls. The differences were small but significant."

Investigators exposed colon cancer cells to UV light that caused DNA damage and then grew the cells in the absence or presence of Lfcin4-14. They evaluated DNA damage using a sensitive technique known as comet assay. After the cells are processed, the cells with DNA damage resemble a comet with a tail, and the intensity of the tail compared to the comet head indicates the number of DNA breaks. UV light exposure resulted in an increase in the number of comets while treatment with Lfcin4-14 reduced the number of comets in UV light-exposed cells.

To understand the mechanism by which Lfcin4-14 reduced DNA damage, investigators evaluated the levels of several proteins involved in cell cycle progression, DNA repair, and cell death. They found an increase in flap endonuclease-1, a protein associated with DNA synthesis; a decrease in b-cell lymphoma 2-associated X protein, which is involved with cell death; and a decrease in the level of -H2AX, indicating more efficient DNA repair. "These changes in expression support our hypothesis that Lfcin4-14 treatment resulted in increased DNA repair," says Dr. Oredsson.

Dr. Oredsson notes that cancer cells, in general, have defects in the DNA repair mechanisms. Thus, Lfcin4-14 may have a greater effect on normal cells than on cancer cells. "Our data suggest that the effects of Lfcin4-14 in prolonging the cell cycle may contribute to the cancer preventive effect of milk. This must be further investigated in different systems," she concludes.

Verity C. Kerkhoff | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Shipment tracking for "fat parcels" in the body
14.10.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Antibody-based eye drops show promise for treating dry eye disease
14.10.2019 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>