Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simply shining light on dinosaur metal compound kills cancer cells

04.02.2019
  • Iridium - a rare metal on earth from the meteorite that wiped out dinosaurs - attached to albumin, a protein in our blood, can penetrate into the nucleus of cancer cells and destroy them when blasted with light, researchers at the University of Warwick have found
  • It can be applied locally and in smaller doses, the next step is pre-clinical trials
  • "It is amazing that this large protein can penetrate into cancer cells and deliver iridium which can kill them." says Professor Peter Sadler from the Department of Chemistry at the University of Warwick

A new compound based on Iridium, a rare metal which landed in the Gulf of Mexico 66 M years ago, hooked onto albumin, a protein in blood, can attack the nucleus of cancerous cells when switched on by light, University of Warwick researchers have found.


Iridium with its organic coat which is hooked up to the protein albumin (HSA). Together that enter cancer cells and deliver the iridium photosensitizer to the nucleus. On irradiation with blue light, the iridium not only glows green, but converts oxygen in the cell to a toxic form called triplet oxygen, which kills the cell.

Credit: University of Warwick

Usage Restrictions: Only to be used in conjunction with this story


The purple stain for cancer cell nuclei overlaps perfectly with the emission of green light from the iridium-albumin conjugate, showing the protein has delivered the photosensitizer to the nucleus of cancer cells.

Credit: University of Warwick

Usage Restrictions: Only to be used in conjunction with this story

The treatment of cancer using light, called Photodynamic therapy, is based on chemical compounds called photosensitizers, which can be switched on by light to produce oxidising species, able to kill cancer cells.

Clinicians can activate these compounds selectively where the tumour is (using optical fibres) thus killing cancer cells and leaving healthy cells intact.

Thanks to the special chemical coating they used, the Warwick group was able to hook up Iridium to the blood protein Albumin, which then glowed very brightly so they could track its passage into cancer cells, where it converted the cells' own oxygen to a lethal form which killed them.

Not only is the newly formed molecule an excellent photosensitiser, but Albumin is able to deliver it into the nucleus inside cancer cells. The dormant compound can then be switched on by light irradiation and destroy the cancer cells from their very centre.

The bright luminescence of the iridium photosensitiser allowed its accumulation in the nucleus of tumour cells and its activation leading to the cancer cell death to be followed in real time using a microscope.

Professor Peter Sadler, from the Department of Chemistry at the University of Warwick comments:

"It is amazing that this large protein can penetrate into cancer cells and deliver iridium which can kill them selectively on activation with visible light. If this technology can be translated into the clinic, it might be effective against resistant cancers and reduce the side effects of chemotherapy"

Dr Cinzia Imberti, from the University of Warwick comments:

"It is fascinating how albumin can deliver our photosensitiser so specifically to the nucleus. We are at a very early stage, but we are looking forward to see where the preclinical development of this new compound can lead."

"Our team is not only extremely multidisciplinary, including biologists, chemists and pharmacists, but also highly international, including young researchers from China, India and Italy supported by Royal Society Newton and Sir Henry Wellcome Fellowships."

###

The paper 'Nucleus Targeted Organoiridium-Albumin Conjugate for Photodynamic Cancer Therapy' has been published in Angewandte Chemie International Edition is available to view here: https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201813002

NOTES TO EDITORS

High-res images available at:
https://warwick.ac.uk/services/communications/medialibrary/images/january2019/nuclei.jpg
https://warwick.ac.uk/services/communications/medialibrary/images/january2019/nuclei_overlay_.jpg
https://warwick.ac.uk/services/communications/medialibrary/images/january2019/nuclei_overlap_2_.jpg

Find out more about the Department of Chemistry at the University of Warwick at: https://warwick.ac.uk/fac/sci/chemistry/

For further information contact:

Alice Scott,
Media Relations Managers - University of Warwick
Tel: +44 (0) 2476574255 or +44 (0) 7920531221
E-mail: alice.j.scott@warwick.ac.uk

http://www.warwick.ac.uk 

Alice Scott | EurekAlert!
Further information:
http://dx.doi.org/10.1002/anie.201813002

More articles from Health and Medicine:

nachricht Preventing metastasis by stopping cancer cells from making fat
23.01.2020 | Université catholique de Louvain

nachricht Possible Alzheimer's breakthrough suggested
22.01.2020 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Residues in fingerprints hold clues to their age

23.01.2020 | Life Sciences

Here, there and everywhere: Large and giant viruses abound globally

23.01.2020 | Life Sciences

Preventing metastasis by stopping cancer cells from making fat

23.01.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>