Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simply shining light on dinosaur metal compound kills cancer cells

04.02.2019
  • Iridium - a rare metal on earth from the meteorite that wiped out dinosaurs - attached to albumin, a protein in our blood, can penetrate into the nucleus of cancer cells and destroy them when blasted with light, researchers at the University of Warwick have found
  • It can be applied locally and in smaller doses, the next step is pre-clinical trials
  • "It is amazing that this large protein can penetrate into cancer cells and deliver iridium which can kill them." says Professor Peter Sadler from the Department of Chemistry at the University of Warwick

A new compound based on Iridium, a rare metal which landed in the Gulf of Mexico 66 M years ago, hooked onto albumin, a protein in blood, can attack the nucleus of cancerous cells when switched on by light, University of Warwick researchers have found.


Iridium with its organic coat which is hooked up to the protein albumin (HSA). Together that enter cancer cells and deliver the iridium photosensitizer to the nucleus. On irradiation with blue light, the iridium not only glows green, but converts oxygen in the cell to a toxic form called triplet oxygen, which kills the cell.

Credit: University of Warwick

Usage Restrictions: Only to be used in conjunction with this story


The purple stain for cancer cell nuclei overlaps perfectly with the emission of green light from the iridium-albumin conjugate, showing the protein has delivered the photosensitizer to the nucleus of cancer cells.

Credit: University of Warwick

Usage Restrictions: Only to be used in conjunction with this story

The treatment of cancer using light, called Photodynamic therapy, is based on chemical compounds called photosensitizers, which can be switched on by light to produce oxidising species, able to kill cancer cells.

Clinicians can activate these compounds selectively where the tumour is (using optical fibres) thus killing cancer cells and leaving healthy cells intact.

Thanks to the special chemical coating they used, the Warwick group was able to hook up Iridium to the blood protein Albumin, which then glowed very brightly so they could track its passage into cancer cells, where it converted the cells' own oxygen to a lethal form which killed them.

Not only is the newly formed molecule an excellent photosensitiser, but Albumin is able to deliver it into the nucleus inside cancer cells. The dormant compound can then be switched on by light irradiation and destroy the cancer cells from their very centre.

The bright luminescence of the iridium photosensitiser allowed its accumulation in the nucleus of tumour cells and its activation leading to the cancer cell death to be followed in real time using a microscope.

Professor Peter Sadler, from the Department of Chemistry at the University of Warwick comments:

"It is amazing that this large protein can penetrate into cancer cells and deliver iridium which can kill them selectively on activation with visible light. If this technology can be translated into the clinic, it might be effective against resistant cancers and reduce the side effects of chemotherapy"

Dr Cinzia Imberti, from the University of Warwick comments:

"It is fascinating how albumin can deliver our photosensitiser so specifically to the nucleus. We are at a very early stage, but we are looking forward to see where the preclinical development of this new compound can lead."

"Our team is not only extremely multidisciplinary, including biologists, chemists and pharmacists, but also highly international, including young researchers from China, India and Italy supported by Royal Society Newton and Sir Henry Wellcome Fellowships."

###

The paper 'Nucleus Targeted Organoiridium-Albumin Conjugate for Photodynamic Cancer Therapy' has been published in Angewandte Chemie International Edition is available to view here: https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201813002

NOTES TO EDITORS

High-res images available at:
https://warwick.ac.uk/services/communications/medialibrary/images/january2019/nuclei.jpg
https://warwick.ac.uk/services/communications/medialibrary/images/january2019/nuclei_overlay_.jpg
https://warwick.ac.uk/services/communications/medialibrary/images/january2019/nuclei_overlap_2_.jpg

Find out more about the Department of Chemistry at the University of Warwick at: https://warwick.ac.uk/fac/sci/chemistry/

For further information contact:

Alice Scott,
Media Relations Managers - University of Warwick
Tel: +44 (0) 2476574255 or +44 (0) 7920531221
E-mail: alice.j.scott@warwick.ac.uk

http://www.warwick.ac.uk 

Alice Scott | EurekAlert!
Further information:
http://dx.doi.org/10.1002/anie.201813002

More articles from Health and Medicine:

nachricht Magnesium deprivation stops pathogen growth
22.11.2019 | Universität Basel

nachricht Protection for pacemakers
22.11.2019 | ETH Zurich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New antenna tech to equip ceramic coatings with heat radiation control

22.11.2019 | Materials Sciences

Pollinator friendliness can extend beyond early spring

22.11.2019 | Life Sciences

Wound healing in mucous tissues could ward off AIDS

22.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>