Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seafood substitutions can expose consumers to unexpectedly high mercury

20.08.2014

New measurements from fish purchased at retail seafood counters in 10 different states show the extent to which mislabeling can expose consumers to unexpectedly high levels of mercury, a harmful pollutant.

Fishery stock "substitutions"—which falsely present a fish of the same species, but from a different geographic origin—are the most dangerous mislabeling offense, according to new research by University of Hawai‘i at Mānoa scientists.


Fish market in Oahu's Chinatown. Photo courtesy Flickr user Michelle Lee.

“Accurate labeling of seafood is essential to allow consumers to choose sustainable fisheries,” said UH Mānoa biologist Peter B. Marko, lead author of the new study published in the scientific journal PLOS One. “But consumers also rely on labels to protect themselves from unhealthy mercury exposure. Seafood mislabeling distorts the true abundance of fish in the sea, defrauds consumers, and can cause unwanted exposure to harmful pollutants such as mercury.”

The study included two kinds of fish: those labeled as Marine Stewardship Council- (MSC-) certified Chilean sea bass, and those labeled simply as Chilean sea bass (uncertified). The MSC-certified version is supposed to be sourced from the Southern Ocean waters of South Georgia, near Antarctica, far away from man-made sources of pollution.  MSC-certified fish is often favored by consumers seeking sustainably harvested seafood but is also potentially attractive given its consistently low levels of mercury.

In a previous study, the scientists had determined that fully 20 percent of fish purchased as Chilean sea bass were not genetically identifiable as such. Further, of those Chilean sea bass positively identified using DNA techniques, 15 percent had genetic markers that indicated that they were not sourced from the South Georgia fishery.

In the new study, the scientists used the same fish samples to collect detailed mercury measurements.  When they compared the mercury in verified, MSC-certified sea bass with the mercury levels of verified, non-certified sea bass, they found no significant difference in the levels. That’s not the story you would have expected based on what is known about geographic patterns of mercury accumulation in Chilean sea bass.

“What’s happening is that the species are being substituted,” Marko explained. “The ones that are substituted for MSC-certified Chilean sea bass tend to have very low mercury, whereas those substituted for uncertified fish tend to have very high mercury.  These substitutions skew the pool of fish used for MSC comparison purposes, making certified and uncertified fish appear to be much more different than they actually are.”

But there’s another confounding factor. Even within the verified, MSC-certified Chilean sea bass samples, certain fish had very high mercury levels—up to 2 or 3 times higher than expected, and sometimes even greater than import limits to some countries.

Marko and his team again turned to genetics to learn more about these fishes’ true nature.  “It turns out that the fish with unexpectedly high mercury originated from some fishery other than the certified fishery in South Georgia,” said Marko. “Most of these fish had mitochondrial DNA that indicated they were from Chile.  Thus, fishery stock substitutions are also contributing to the pattern by making MSC-certified fish appear to have more mercury than they really should have.”

The bottom line:  Most consumers already know that mercury levels vary between species, and many public outreach campaigns have helped educate the public about which fish species to minimize or avoid.  Less appreciated is the fact that mercury varies considerably within a species.

“Because mercury accumulation varies within a species’ geographic range, according to a variety of environmental factors, the location where the fish is harvested matters a great deal,” Marko said.

“Although on average MSC-certified fish is a healthier option than uncertified fish, with respect to mercury contamination, our study shows that fishery-stock substitutions can result in a larger proportional increase in mercury,” Marko said. “We recommend that consumer advocates take a closer look at the variation in mercury contamination depending on the geographic source of the fishery stock when they consider future seafood consumption guidelines.”

CITATION:

Marko PB, Nance HA, van den Hurk P (2014) Seafood Substitutions Obscure Patterns of Mercury Contamination in Patagonian Toothfish (Dissostichus eleginoides) or “Chilean Sea Bass”. PLoS ONE 9(8): e104140. doi: 10.1371/journal.pone.0104140

University of Hawaiʻi at Mānoa

Contact:
Peter Marko, (808) 956-6146
Associate Professor, Biology
Talia Ogliore, (808) 956-4531
Public Information Officer, Vice Chancellor for Research

Talia S Ogliore | Eurek Alert!
Further information:
http://manoa.hawaii.edu/news/article.php?aId=6675

Further reports about: DNA contamination exposure fishery seafood species techniques

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>