Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists release data on potential new treatment targets for malaria

20.05.2010
International collaboration led by St. Jude Children's Research Hospital scientists identifies promising compounds for anti-malarial drug development and launches a database to share findings, advance fight against a leading killer of the world's children

An international team led by St. Jude Children's Research Hospital investigators today released data detailing the effectiveness of nearly 310,000 chemicals against a malaria parasite that remains one of the world's leading killers of young children.

The research, which appears in the May 20 edition of the scientific journal Nature, identified more than 1,100 new compounds with confirmed activity against the malaria parasite. Of those, 172 were studied in detail, leading to identification of almost two dozen families of molecules investigators consider possible candidates for drug development. St. Jude researchers already used one of the molecules to stop the parasite's growth in mice.

The six-year malaria project was launched by R. Kiplin Guy, Ph.D., St. Jude Department of Chemical Biology and Therapeutics chair, in an effort to revive malaria drug development. Guy is senior author of the study. W. Armand Guiguemde, Ph.D., a postdoctoral fellow in Guy's laboratory, is the first author.

"Malaria causes roughly 8 percent of childhood deaths worldwide and remains among the greatest threats to children in the developing world," Guy said. "At St. Jude, we focus on diseases that kill children, but lack good treatments. That is what drove us to start this work."

"These are the same tools and techniques that we are now using to find new targets and drugs to treat childhood cancer. This work illustrates their enormous power for drug discovery," said Dr. William Evans, St. Jude director and chief executive officer.

The effort has grown into a consortium that includes investigators at nine institutions and foundations in the U.S., Australia and Europe. Collaborators are taking cooperation a step further and launching a public database to share the results of their research and the underlying data.

"We've provided a toolbox to the global community and given them a lot of the early results from working with the tools so they won't have to repeat the work," Guy said. "This new information doubles the number of chemical structures available for anti-malarial drug development."

The database includes the chemical structure and activity profile of each of the 309,474 molecules in the St. Jude library of drugs, natural compounds and other chemicals. There is additional information about the 172 compounds that were more comprehensively evaluated. The compounds are all commercially available. Researchers interested in accessing the database can visit www.stjuderesearch.org/guy/data/malaria.

In recent years, malaria drug development has focused on creating medications against specific targets or on improving existing medications. The approach focused on a handful of chemical targets, and results have been disappointing.

For this study, investigators used a different strategy and surveyed the hospital's library of compounds looking for those effective against the entire malaria parasite. Scientists tested the chemicals against the Plasmodium falciparum, the deadliest of the malaria parasites. The work led St. Jude researchers to three families of molecules, including two believed to act against new targets. Investigators hope to have a new drug in the clinic within a decade.

Collaborating scientists on this project include Anang Shelat, David Smithson, Michele Connelly, Julie Clark, Fangyi Zhu, all of St. Jude; David Bouck, formerly of St. Jude; Sandra Duffy and Vicky Avery, both of Griffith University, Brisbane, Australia; Gregory Crowther, Wesley Van Voorhis, Joseph Fowble and Pradipsinh Rathod, all of the University of Washington, Seattle; Paul Davis and David Roos, both of the University of Pennsylvania, Philadelphia; María Jiménez-Díaz, María Martinez, Iñigo Angulo-Barturen and Santiago Ferrer, all of GlaxoSmithKline, Tres Cantos; Joseph DeRisi, Emily Wilson, Jiri Gut and Philip Rosenthal, all of the University of California, San Francisco; Abhai Tripathi and David Sullivan Jr., both of Johns Hopkins Bloomberg School of Public Health, Baltimore; Elizabeth Sharlow and John Lazo, both of the University of Pittsburgh; Ian Bathurst, Medicines for Malaria Venture, Geneva, Switzerland; Farah El Mazouni and Margaret Phillips, both of the University of Texas Southwestern Medical Center at Dallas; and Isaac Forquer and Michael Riscoe, Portland Veterans Administration Medical Center, Portland, Oregon.

The research was supported in part by St. Jude, the Medicines for Malaria Venture, the National Institute of Allergy and Infectious Diseases, the National Cancer Institute, the Welch Foundation, the Doris Duke Charitable Foundation, the Ellison Medical Foundation and ALSAC.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other catastrophic diseases. Ranked the No. 1 pediatric cancer hospital by Parents magazine, St. Jude is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and has treated children from all 50 states and from around the world. St. Jude has developed research protocols that helped push overall survival rates for childhood cancer from less than 20 percent when the hospital opened to almost 80 percent today. St. Jude is the national coordinating center for the Pediatric Brain Tumor Consortium and the Childhood Cancer Survivor Study. In addition to pediatric cancer research, St. Jude is also a leader in sickle cell disease research and is a globally prominent research center for influenza.

Founded in 1962 by the late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world, publishing more research articles than any other pediatric cancer research center in the United States. St. Jude treats more than 5,400 patients each year and is the only pediatric cancer research center where families never pay for treatment not covered by insurance. St. Jude is financially supported by thousands of individual donors, organizations and corporations without which the hospital's work would not be possible. In 2010, St. Jude was ranked the most trusted charity in the nation in a public survey conducted by Harris Interactive, a highly respected international polling and research firm. For more information, go to www.stjude.org.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>