Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new properties of microbes that cause common eye infection

12.11.2014

Scientists from Massachusetts Eye and Ear/Harvard Medical School Department of Ophthalmology have used the power of new genomic technology to discover that microbes that commonly infect the eye have special, previously unknown properties. These properties are predicted to allow the bacterium -- Streptococcus pneumoniae -- to specifically stick to the surface of the eye, grow, and cause damage and inflammation.

Researchers are now using this information to develop new ways to treat and prevent this bacterium, which is becoming increasingly resistant to antibiotics. Their findings are in the current issue of Nature Communications.

S. pneumoniae is a leading cause of infection and is responsible for diseases ranging from infection of the lungs, pneumonia, to infection of the brain, to infection of the surface of the eye known as conjunctivitis. Although infection of the eye can usually be safely treated, S. pneumoniae infection is a leading cause of illness and death worldwide.

According to Mass. Eye and Ear researcher Michael S. Gilmore, Sir William Osler Professor of Ophthalmology, Harvard Medical School, an effective vaccine is available that helps prevent many of the most severe types of infection. "I believe it is especially important for children and the elderly to be vaccinated. The vaccine causes the body to react to a slimy coating on the bacterial surface called a "capsule." The capsule allows S. pneumoniae to escape from white blood cells that try to eliminate it, and S. pneumoniae goes on to cause lung and other infections."

However, the strains of S. pneumoniae that cause eye infection have been known to lack this capsule, yet they still cause infection. "Because they lack the capsule, they are not affected by the vaccine either," he continued.

To design a better vaccine, and to understand how these "unencapsulated" strains of S. pneumoniae are still able to cause infection of the ocular surface, the research team, spearheaded by postdoctoral researcher Michael Valentino and including Mass. Eye and Ear scientists Wolfgang Haas and Paulo Bispo, as well as a collaborative team from the Broad Institute of Harvard University and Massachusetts Institute of Technology, the U.S. Centers for Disease Control and Prevention, and elsewhere, examined the genomes of a large collection of S. pneumoniae strains collected from across the United States.

"We found that about 90 percent of the conjunctivitis strains were very closely related and formed a new group of S. pneumoniae with infectious properties that were different from any other known strains," Dr. Gilmore said. "These new properties are believed to allow S. pneumoniae to resist the normal clearance mechanisms of the surface of the eye, including blinking and tears, stick to the eye surface, grow there and cause damage."

Dr. Gilmore believes that including some of the S. pneumoniae proteins that allow the bacterium to do this in a new type of vaccine, might lead to the prevention of nearly 90 percent of the cases of conjunctivitis caused by this microbe and save the use of antibiotics for more severe infections.

The paper, entitled "Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster," appears in the Nov. 13 issue of issue of the prestigious international science journal, Nature Communications.

Portions of this project were supported by NIH grants EY024285, Molecular Basis for Ocular Surface Tropism in Conjunctivitis and by the Harvard-wide Program on Antibiotic Resistance, AI083214. HHSN272200900018C supported the involvement of A.M.M. Additional support for this project was obtained from the ALSAC organization of St Jude Children's Research Hospital (J.W.R., C.B., R.A.C. and E.I.T.). In addition, portions of this project were supported by Bausch and Lomb Inc. (C.M.S., W.H., T.W.M. and M.S.G.). M.D.V. was supported in part by NIH fellowship through EY007145.

About Massachusetts Eye and Ear

Massachusetts Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. Led by the Howe Laboratory in Ophthalmology, Schepens Eye Research Institute, and the Eaton-Peabody Laboratory in Otology, Mass. Eye and Ear in Boston is the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation.

Mass. Eye and Ear is a Harvard Medical School teaching hospital that trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Ophthalmology and Otolaryngology as among the best in the nation.

Mary Leach | EurekAlert!
Further information:
http://www.meei.harvard.edu/

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>