Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewiring DNA circuitry could help treat asthma

05.07.2012
Reprogramming asthma-promoting immune cells in mice diminishes airway damage and inflammation, and could potentially lead to new treatments for people with asthma, researchers have found.
The researchers were able to reprogram the asthma-promoting cells (called Th2 (T-helper 2) cells) after identifying an enzyme that modifies the DNA of these cells. The enzyme could be a target for the development of new treatments for chronic inflammatory diseases, in particular allergic asthma, caused by an excess of Th2 cells.

Walter and Eliza Hall Institute researcher Dr Rhys Allan led the research while working at Institut Curie, Paris. The research team from Institut Curie, National Centre for Scientific Research (CNRS), France, National Institute of Health and Medical Research (INSERM), France, and Montpellier Cancer Research Institute published the study today in the journal Nature.

Dr Allan said the research team discovered that the enzyme Suv39h1 could switch off genes to control the function of Th2 cells, which are key to the allergic response.

“Th2 cells have an important function in the immune response, but they also play a significant role in diseases such as allergic asthma,” Dr Allan said. “People with asthma have too many Th2 cells, which produce chemical signals that inflame and damage the upper airways. In this study, we discovered that the Suv39h1 enzyme plays a critical role in programming these asthma-promoting cells, making it a potential target for new therapies to treat asthma.”

More than two million Australians have asthma – approximately one in 10 people – and the disease is even more common among Indigenous Australians. The prevalence of asthma in children in Australia is among the highest in the world.

Dr Allan said the Suv39h1 enzyme was part of the ‘epigenetic circuitry’ of Th2 cells.

“Epigenetics refers to changes or modifications in the DNA that alter how genes are switched on and off, without changing the fundamental DNA sequence. Suv39h1 effectively ‘tags’ the DNA to tell the cells which genes they need to switch on or off to promote an allergic response.”

Using agents that inhibit Suv39h1 could destabilise Th2 cells in people who have an excess of these asthma-promoting cells so they no longer cause inflammation, Dr Allan said.

“We had the idea that erasing these epigenetic tags could ‘short-circuit’ the asthma-promoting Th2 cells and diminish the inflammatory immune response. And, in fact, in mouse models of allergic asthma, blocking this pathway with an inhibitory compound did reduce allergy-related airway damage. Ultimately, our results have identified a potential target for therapeutic intervention in asthma and potentially other Th2-mediated inflammatory diseases, which could improve outcomes for patients,” Dr Allan said.

Dr Allan is continuing to study the epigenetic circuitry of asthma-promoting immune cells in the institute’s Molecular Immunology division, with funding from the National Health and Medical Research Council of Australia (NHMRC).

The research was supported by Institut Curie, CNRS and INSERM. Dr Allan was funded by an INSERM-NHMRC exchange fellowship.

View the journal paper at Nature (subscription required).

Download the media release (pdf)

For further information

Liz Williams
Media and Publications Manager
Ph: +61 3 9345 2928
Mob: +61 405 279 095
Email: williams@wehi.edu.au

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au
http://www.wehi.edu.au/site/latest_news/rewiring_dna_circuitry_could_help_treat_asthma

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>