Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers do precise gene therapy without a needle

17.10.2011
For the first time, researchers have found a way to inject a precise dose of a gene therapy agent directly into a single living cell without a needle.

The technique uses electricity to “shoot” bits of therapeutic biomolecules through a tiny channel and into a cell in a fraction of a second.

L. James Lee and his colleagues at Ohio State University describe the technique in the online edition of the journal Nature Nanotechnology, where they report successfully inserting specific doses of an anti-cancer gene into individual leukemia cells to kill them.

They have dubbed the method “nanochannel electroporation,” or NEP.

“NEP allows us to investigate how drugs and other biomolecules affect cell biology and genetic pathways at a level not achievable by any existing techniques,” said Lee, who is the Helen C. Kurtz Professor of Chemical and Biomolecular Engineering and director of the NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices at Ohio State.

There have long been ways to insert random amounts of biomaterial into bulk quantities of cells for gene therapy. And fine needles can inject specific amounts of material into large cells. But most human cells are too small for even the smallest needles to be of any use.

NEP gets around the problem by suspending a cell inside an electronic device with a reservoir of therapeutic agent nearby. Electrical pulses push the agent out of the reservoir and through a nanometer- (billionth of a meter) scale channel in the device, through the cell wall, and into the cell. Researchers control the dose by adjusting the number of pulses and the width of the channel.

In Nature Nanotechnology, they explain how they constructed prototype devices using polymer stamps. They used individual strands of DNA as templates for the nanometer-sized channels.

Lee invented the technique for uncoiling strands of DNA and forming them into precise patterns so that they could work as wires in biologically based electronics and medical devices. But for this study, gold-coated DNA strands were stretched between two reservoirs and then etched away, in order to leave behind a nano-channel of precise dimensions connecting the reservoirs within the polymeric device.

Electrodes in the channels turn the device into a tiny circuit, and electrical pulses of a few hundred volts travel from the reservoir with the therapeutic agent through the nano-channel and into a second reservoir with the cell. This creates a strong electric field at the outlet of the nano-channel, which interacts with the cell’s natural electric charge to force open a hole in the cell membrane – one large enough to deliver the agent, but small enough not to kill the cell.

In tests, they were able to insert agents into cells in as little as a few milliseconds, or thousandths of a second.

First, they tagged bits of synthetic DNA with fluorescent molecules, and used NEP to insert them into human immune cells. After a single 5-millisecond pulse, they began see spots of fluorescence scattered within the cells. They tested different pulse lengths up to 60 milliseconds – which filled the cells with fluorescence.

To test whether NEP could deliver active therapeutic agents, they inserted bits of therapeutic RNA into leukemia cells. Pulses as short as 5 milliseconds delivered enough RNA to kill some of the cells. Longer pulses – approaching 10 milliseconds – killed almost all of them. They also inserted some harmless RNA into other leukemia cells for comparison, and those cells lived.

At the moment, the process is best suited for laboratory research, Lee said, because it only works on one cell or several cells at a time. But he and his team are working on ways to inject many cells simultaneously. They are currently developing a mechanical cell-loading system that would inject up to 100,000 cells at once, which would potentially make clinical diagnostics and treatments possible.

“We hope that NEP could eventually become a tool for early cancer detection and treatment – for instance, inserting precise amounts of genes or proteins into stem cells or immune cells to guide their differentiation and changes – without the safety concerns caused by overdosing, and then placing the cells back in the body for cell-based therapy,” Lee added.

He sees potential applications for diagnosing and treating leukemia, lung cancer, and other tumors. He’s working with researchers at Ohio State’s Comprehensive Cancer Center to explore those possibilities.

Coathors on the paper include Pouyan Boukany, Andrew Morss, Wei-ching Liao, Brian Henslee, Xulang Zhang, Bo Yu, Xinmei Wang, Yun Wu, HyunChul Jung, Lei Li, Keliang Gao, Xin Hu, Xi Zhao, O. Hemminger, Wu Lu, and Gregory P. Lafyatis, all of Ohio State.

This work was funded by the National Science Foundation.

Contact: L. James Lee, (614) 292-2408; Lee.31@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

L. James Lee | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

nachricht Machine learning platform guides pancreatic cyst management in patients
18.07.2019 | American Association for the Advancement of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>