Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Acidic PH Microenvironments in Tumors Aid Tumor Cell Survival

06.09.2012
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida and Wayne State University have discovered that tumor cell survival relies on adaptation to acidic conditions in the tumor microenvironment.
Their research investigating the effects of acidity on breast and pancreatic cancer cell lines revealed the importance of autophagy in acidic microenvironments and suggests that a successful treatment strategy might be based on this autophagic dependence.

The study appears as the cover story for the Aug. 15 issue of Cancer Research, a publication of the American Association for Cancer Research.
“Cancer progression is a multistep process strongly influenced by the physical properties of the tumor microenvironment,” said Robert J. Gillies, Ph.D., corresponding author of the study and chair of Moffitt’s Department of Cancer Imaging and Metabolism. “Both low oxygen and high acidity can be cytotoxic. Our research suggests that adaptation to these stressful conditions involves autophagy allowing cancer cells to survive, proliferate and eventually metastasize to secondary sites.”

According to the authors, not much is known about cell survival mechanisms under acidic conditions, but it has been demonstrated that acidosis can alter gene expression leading to cell types that are adapted for growth and survival in low pH conditions. Identifying low pH survival mechanisms would “give further insight into tumor progression and potentially introduce novel therapeutic strategies,” researchers said.

In this study, the researchers tested cancer cell lines under acidic conditions to learn more about autophagy and cellular adaptation. They noted that normal cells in the acidic environment can respond to acidic stress by increasing cell death pathways, thus introducing the need for survival and adaptive mechanisms by cancer cells.

The researchers also noted that their experiments were carried out under atmospheric oxygen levels and they found that the cell’s stress response could lead to chronic autophagy even when nutrients and oxygen were in adequate supply.

“We found that cells subjected to transient and chronic low pH growth conditions demonstrate elevated markers for autophagy and are dependent on this process for prolonged survival in acidic environments,” explained Jonathan W. Wojtkowiak, lead author of the study and postdoctoral fellow at Moffitt. “A hallmark of cancer is the ability of cancer cells to evade apoptosis. Autophagy supports this by playing a tumor promoter and survival role under certain circumstances during different stages of tumorogenesis.”

Their study demonstrated the importance of autophagy in low pH-adapted breast and pancreatic cancer cell lines and the dependence of these cells on autophagy for survival to acidic tumor microenvironment. According to the researchers, they identified a potential therapeutic strategy of using an autophagy inhibitor, one that does not affect cells under neutral conditions.

Funding for the study came from National Institutes of Health grants R01 CA077575, U54 CA143970 and R01 CA 131990.

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>