Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at the University of Bonn boost fat-burning

09.03.2016

The number of overweight people is increasing worldwide – and thus the risk of developing diabetes or cardiovascular disease. For this reason, many dream of an active substance which would simply melt off fat deposits. An international team of scientists has now come one small step closer to this dream: The team discovered a switch in the fat cells of mice and humans with which excess pounds can be burned off. If the Gq protein is blocked, undesired white fat cells change into energy-consuming brown cells. The results are now being presented in the renowned journal "Nature Communications".

Significantly overweight people have a particularly large number of white fat cells but in contrast, they lack brown fat cells. The white cells are responsible for bothersome fat deposits; conversely, the brown cells "burn off" unwanted pounds by releasing the energy stored in them in the form of heat.


In the lab: Prof. Dr. Alexander Pfeifer and Katarina Klepac from the Institute of Pharmacology and Toxicology at University of Bonn.

© Photo: Barbara Frommann/Uni Bonn

Prof. Dr. Alexander Pfeifer from the Institute of Pharmacology and Toxicology at the University of Bonn has spent years researching how harmful white fat cells can be converted into desirable brown fat cells.

"We are looking for targets for new pharmaceutical products to one day be able to effectively combat obesity as the cause of numerous widespread diseases, such as diabetes or cardiovascular disease," says the scientist. If the researchers' dream comes true, brown fat cells could be boosted with yet-to-be-developed active substances such that rolls of fat could simply be melted off. "However, we still have a long way to go," says Prof. Pfeifer. His studies are still in the basic research stage.

There is a particularly high number of Gq proteins in brown fat cells

An international team of scientists working with Prof. Pfeifer, under the leadership of the University of Bonn, with colleagues from San Diego and Bethesda (both USA), Gothenburg (Sweden) and the Universities of Heidelberg and Leipzig, has discovered a "switch" in the fat cells of mice which can be used to accelerate fat burning. The researchers observed that there is a particularly high number of receptors in brown fat cells which bind to the Gq protein. The Gq protein performs an important function in information transfer.

The scientists activated the Gq protein in the mouse fat cells and as a result, the number and quality of the brown cells decreased. "On the other hand, if Gq is blocked with an inhibitor, more brown fat cells mature," says Ph.D. student Katarina Klepac from Prof. Pfeifer's team. The same applies to the beige fat cells on which the researchers are pinning their hopes. They can convert from white to brown fat cells and are also involved in "burning" excess energy stores. If the Gq protein is blocked in them, more brown "fat burners" form.

The conversion also works for human fat cells

Does the inhibition of the Gq proteins only work in mouse cells or also in human fat cells? The team of researchers conducted the experiments – which had previously been performed on rodent cells – also on human cells which they cultured in the laboratory. "Even in human fat cells, it was shown that brown fat cells can grow much better once Gq proteins were blocked," says Prof. Pfeifer.

According to the researcher, this could be a highly promising potential starting point for the development of active substances which boost fat burning in obese patients. "To date, there are no drugs which directly cause white fat cells to convert into brown fat cells," says Prof. Pfeifer. It will still be some time until suitable active substances are available on the market.

Publication: The Gq signalling pathway inhibits brown and beige adipose tissue, Nature Communications, DOI: 10.1038/NCOMMS10895

Media contact information:

Prof. Dr. Alexander Pfeifer
Institute of Pharmacology and Toxicology
University of Bonn
Tel. ++49-228-28751300
E-Mail: alexander.pfeifer@uni-bonn.de

Weitere Informationen:

http://www.nature.com/naturecommunications Publication online

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>