Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Develops Ultrasound So Tiny It Can Travel Through the Eardrum

16.12.2008
A researcher at Dalhousie University is developing an ultrasound device so small, it could travel through the eardrum, onwards through the middle ear and then rest against the inner ear. The device will be able to detect scarring from implants in the middle ear, or detect the effects of diseases like Meniere’s.

Imagine an ultrasound device so small, it could travel through the eardrum, onwards through the middle ear and then rest against the inner ear to provide images of the basilier membrane as at it vibrates, sending messages to the brain as it interprets sound.

It’s not science fiction a la Fantastic Voyage—it’s what Dalhousie University researcher Jeremy Brown is developing in collaboration with ear surgeon Manohar Bance, professor of Otology, Neurotology and Skull Base Surgery with Dalhousie’s Faculty of Medicine.

“We’ve been taking what’s called a ‘bench top to bedside’ approach,” says Dr. Brown, assistant professor of Biomedical Engineering at Dalhousie. “I’d have no idea if this was possible unless I was paired with a surgeon … the collaboration is working out great so far.”

The miniature device measures a mere two millimeters in diameter. Yet, even at that size, the probe contains 150 elements—tiny transducers that vibrate when electric signals are applied. Once planted deep within the ear through a minor surgical procedure, the probe would be able to detect scarring from implants in the middle ear, for example, or detect the ravages of diseases like Meniere’s, an inner-ear disorder which causes episodes of vertigo.

“What’s exciting is that no one has really done this before,” says Dr. Brown, whose interest in sound and sound perception comes from being a musician.

Now, the researchers are ready to take the next step and build on prototypes that have been tested on mice. Money received from the Canadian Foundation for Innovation’s Leaders Opportunity Fund and matched by the Nova Scotia Research and Innovation Trust—$311,000 all told—will allow them to acquire equipment developed by the semi-conductor industry to build and further refine the miniature devices.

“This equipment is so unbelievably good, that we can just piggyback on it to do what we need it to do,” says Dr. Brown.

He is also collaborating with Dr. Bance on a second “small” project, to develop tiny, surgically implanted hearing aids.

Charles Crosby | Newswise Science News
Further information:
http://www.dal.ca

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>