Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research yields insights into Parkinson's disease

05.06.2012
Researchers at the University of Toronto Scarborough (UTSC) used an innovative technique to examine chemical interactions that are implicated in Parkinson's Disease.

The work details how a protein called alpha-synuclein interacting with the brain chemical dopamine can lead to protein misfolding and neuronal death.

Parkinson's Disease is a neurodegenerative disease which results in loss of motor control and cognitive function. Although the cause isn't known precisely, the disease involves the death of brain cells that produce dopamine, a chemical important in neuronal signaling. The disease also involves a protein called alpha-synuclein which aggregates in the neurons of people with the disease.

Kagan Kerman, a chemist in the Department of Physical and Environmental Sciences, and Ian R. Brown, a neuroscientist who founded UTSC's Centre for the Neurobiology of Stress in the Department of Biological Sciences, looked at the way dopamine interacts with alpha-synuclein to form aggregates that may be toxic to neurons.

"This is very fundamental," says Kagan Kerman. "It gives us a new point of view of the misfolding proteins and how they are affected by dopamine."

These sorts of interactions are often studied using microscopy. But the UTSC researchers decided to use an electroanalytic technique called voltammetry. By studying tiny changes in electric current as dopamine and alpha-synuclein interacted they were able to determine details about the early phases of the interaction.

Using the technique, they were able to detail how changes in pH levels and ionic strength of the solution affected the interaction. They found that at higher pH levels and higher ionic strengths, dopamine interacted much more strongly with alpha-synuclein, forming aggregates more quickly.

The results could have implications for understanding and treating the disease. Normally dopamine is contained in structures called vesicles, in which pH levels are low and dopamine is unlikely to interact with alpha-synuclein. Outside of the vesicles dopamine encounters higher pH levels and, according to the new research, is much more likely to interact to create aggregates.

The analysis was done using chemicals deposited onto screen-printed electrodes only 12.5 mm by 4 mm. The electrodes were manufactured at Osaka University, where Kerman completed his PhD work. Because they are so small, the electrodes allowed analysis to be done on tiny samples.

The technique is a potentially quicker and cheaper way to study protein misfolding, and could be automated to screen drugs that might treat the disease, says Brown.

The research was published in Chemical Neuroscience, published by the American Chemical Society.

Kagan Kerman | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht Study points to new drug target in fight against cancer
19.09.2019 | Rice University

nachricht Researchers develop tumour growth roadmap
19.09.2019 | Universität Leipzig

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>