Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Umeå scientist publishes new findings about origin of plague bacterium

29.04.2002


A team including researchers at the Total Defense Research Institute, NBC Defense, in Umeå, Sweden, and the Department of Molecular Biology, Umeå University, are publishing in this week’s issue of Science new findings that show that the protein Ymt is of crucial importance for the capacity of the plague bacterium to survive and spread the plague via flea vectors. Professor Åke Forsberg and visiting researcher Dr. Peter Cherepanov are studying the properties that enable the plague bacterium Yersinia pestis to cause life-threatening infections in animals and humans. Increased knowledge of the mechanisms that Y. pestis exploits to conquer the body’s immune defense can make it possible to develop new methods of treatment for serious infectious diseases.

Historically, the plague is one of our most feared infectious diseases. During the most wide-spread epidemic in the middle ages, also known as the Black Death, more than 25% of the European population died. Today the disease is not very common, with some 2,000 cases per year. The plague occurs primarily in Africa and Asia, but there are also a few cases in North America every year.

The bacteria are normally spread by fleas, first of all to rodents. Humans can also be infected by fleas. When the disease reaches the lungs of a human, the infection can be spread through the air to other people. The onset of the disease is rapid, with a high temperature and a headache. There is often an enlargement of the lymph glands located near the back of the jaw, which explains why it is also called the bubonic plague. Untreated, the infection quickly reaches the blood, leading to general blood poisoning. Mortality for untreated bubonic plague is over 50%. If the infection is spread by the air to the lungs, the course of the disease is even more rapid, and mortality for untreated lung plague is virtually 100%. The high rate of mortality, together with the rapid progression of the disease, places plague bacteria among those considered for use as a biological weapon.



Y. pestis is very closely related to another bacterium called Y. pseudotuberculosis. The plague bacterium evolved from Y. pseudotuberculosis as recently as 1,500 to 2,000 years ago. Y. pseudotuberculosis leads to a relatively mild stomach infection in humans.

The key to the capacity of the plague bacterium to cause fatal infections in humans lies in the differences between the two species of bacteria. The plague bacterium has two movable genetic elements, plasmids, that Y. pseudotuberculosis lacks. On one of these plasmids the research team has identified a gene that codes for a previously described “mouse toxin” that is seen as a major part of the explanation for the high potency of the plague bacterium in causing disease.

The researchers have now shown that the gene, Ymt, is not at all involved in the infection of animals but instead is absolutely crucial to the ability of the bacterium to survive in fleas and thereby to spread the disease further. The ability to spread the disease via fleas represents a decisive step in the development of the plague bacterium. Thus, this ability arose in connection with the acquisition of the plasmid that hosts the Ymt gene.

The Umeå scientists arrived at these findings in collaboration with researchers from the Rocky Mountain Laboratories, NIH, Hamilton, and the University of Michigan Medical School, Ann Arbor, Michigan.

Ulrika Bergfors Kriström | alphagalileo

More articles from Health and Medicine:

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>