Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Russia with gloves

23.04.2002


Ex-Soviet Union viruses could fill antibiotic gap.



Russian remedies could take out hardy US bacteria. Long-abandoned by Western medicine, viruses that naturally kill microbes are being imported as a potential substitute for antibiotics.

The emergence of multi-drug-resistant bacteria is intensifying the search for antibiotic replacements. Bemoaning the problem, clinician Glenn Morris of the University of Maryland in College Park got an idea from a colleague from the former Soviet republic of Georgia. Morris explains: "He said, ’why don’t you use ’phage therapy?’; I said, ’what’s ’phage therapy?’."


’Phages - more properly, bacteriophages - are viruses that are harmless to humans but kill bacteria. They were widely researched as a means to tackle disease until the 1940s. When potent antibiotics appeared on the scene, the West discarded them.

Eastern Europe and the former Soviet Union pursued ’phage therapy, so ’phage creams, pills and plasters are commonly available there. Now Morris and his colleagues are carrying out basic tests to update the treatments for US product licenses.

Worktops contaminated with the foodborne bacteria Listeria are clean within 24 hours of ’phage treatment, he told the Experimental Biology 2002 meeting in New Orleans on Sunday. Salmonella and Escherichia coli are similarly wiped out. ’Phages could be used in food production or packaging, Morris suggests.

Unlike antibiotics, ’phages kill only a specific bacterial type, leaving other, beneficial bugs intact. For example, antibiotic resistant strains of the gut bacteria Enterococcus, which can cause dangerous infections after surgery or in chemotherapy patients, are also being tackled.

We are naturally surrounded by ’phages. The type that Morris is using attack and multiply inside bacteria then split them apart to escape. The ’phages keep killing until their victims run out, and then quietly die.

Cold science

Part of the reason that the West dropped ’phages was that bacteria might evade them, says Richard Young, who studies pathogenic microbes at the Whitehead Institute in Cambridge, Massachusetts. A single change in the bacterial receptor to which they bind could render it resistant to the virus: "It was viewed as its Achilles heel," he says.

A mixture of 30-40 different ’phages all aimed at the same bug should get around this problem. "A cocktail is important," agrees Heidi Kaplan, who studies antibiotic-resistant bacteria at the University of Texas Medical School in Houston.

"US science tends to have a prejudice against Soviet science," adds Morris, who now collaborates with the Eliava Institute of Bacteriophage, Microbiology and Virology in Tbilisi, Georgia. But Morris is not alone in trying to bring down the scientific cold wall - two small biotech companies besides his are also on the case.

HELEN PEARSON | © Nature News Service

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>