Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism Consortium releases data on genes involved in autism to researchers worldwide

24.10.2007
The Autism Consortium, a group of researchers, clinicians and families dedicated to radically accelerating research and enhancing clinical care for autism, announced today that it has completed the first genome scan for Autism Spectrum Disorders (ASD) through its Autism Gene Discovery Project and has released the reference data set to a database that autism researchers around the world can use. The scan was conducted using new, high resolution technology developed by Affymetrix on genetic data from more than 3,000 children with ASD and their families.

“Today’s release of genetic and phenotypic data on autism marks a significant achievement for the autism research community,” said Thomas Insel, Ph.D., Director of the National Institute for Mental Health. “Progress in finding the causes and cures for autism spectrum disorders rests in large part on improving the rapid access and sharing of data and resources That the Consortium is making the data available to the scientific community even before its own researchers have fully analyzed the information, demonstrates their high degree of commitment to and leadership in advancing autism research.”

Along with complementary data generated by Dr. Aravinda Chakravarti at Johns Hopkins and provided to the NIMH this week, these data provide the most detailed look to date at the genetic variation patterns in families with autism.

Mark Daly, PhD, a Consortium member with the Center for Human Genetic Research at Massachusetts General Hospital and a senior associate member of the Broad Institute of Massachusetts Institute of Technology and Harvard, released genetic data from genome wide scans of DNA variation collected from 3,000 individuals who are either affected by autism spectrum disorders, or are family members of individuals with autism. DNA samples for this scan were provided by the Autism Genetic Resource Exchange (AGRE), a program of Autism Speaks, dedicated to accelerating the pace of autism research.

“We’re releasing raw genotype data so that other qualified researchers can take a look at it even as we’re still beginning our own analysis,” Daly said. “Autism Spectrum Disorders are extremely complex and only through collaboration with researchers with many specialized areas of expertise will we gain an understanding of what makes some children susceptible. That’s why we have been committed to providing the data to the research community as fast as we can. The new data will be deposited in the gene bank maintained by AGRE, which, in turn, will make the data available to qualified researchers.”

“It is really something of a landmark to have both data from his laboratory and mine available to autism researchers at virtually the same time,” said Dr. Chakravarti, who collaborated with Dr. Daly for many years. “We will each look carefully at the other’s findings as we continue to search for definitive information about which genes are important in causing autism spectrum disorders.”

The prepublication release of such a significant trove of data is a dramatic departure from the traditional less open culture of research science and a landmark achievement for the Consortium and its Autism Gene Discovery Project, the first comprehensive genetic association study to examine the entire human genome related to autism.

The number of individuals diagnosed with autism spectrum disorders has significantly increased in recent years. Although there is some uncertainty about the role that better diagnosis, greater recognition of the disorders, and biological and environmental factors play; there is growing agreement in the research community that genes have a significant role in autism spectrum disorders. The release of the data from this screen is a significant step toward identifying the genes involved in ASD.

Researchers in the Autism Gene Discovery Project conducted the genome wide study using GeneChip® microarray technology made by Affymetrix Inc, of Santa Clara, California, in their search for autism spectrum disorder-related genes. The Affymetrix 500K Array offers a comprehensive view of the genome, enabling researchers to analyze 500,000 markers simultaneously and perform whole-genome analyses in large populations. The Affymetrix microarray chips were processed by researchers in the Broad Institute's Genetic Analysis Platform.

These tools enable researchers to search across the entire genome for areas of deletions or duplications of genetic material or for single nucleotide polymorphisms (SNPs), small changes in the DNA sequence. Daly, a statistical geneticist, and his colleagues wrote two mathematical algorithms to analyze the genome scan for specific genes involved in autism spectrum disorders, or for the absence of genes that ought to be present. Among other things, the Autism Consortium’s Gene Discovery Group found what they believe may be important new information on the genes involved in autism spectrum disorders. The next step is to conduct an association analysis to determine the role that the genetic variations identified in the scan play in autism spectrum disorders.

According to Daly, the speed at which he collected genome wide data from such a large sample could not have been accomplished without the funding or the collaboration from the Autuism Consortium, which contributed the $1 million needed to complete the project saving the researchers months or years seeking grants. The grant was made possible through a gift from the Anne and Paul Marcus Family Foundation which provided the funds for the Gene Association Study as well as for the purchase of the entire set of samples from AGRE.

“Autism spectrum disorders present major challenges for families, communities, and the health care system,” said Peter Barrett, president of the Autism Consortium. “Our job is to accelerate new ways to diagnose and treat autism spectrum disorders by breaking down barriers. In this case, we are working to foster collaboration between scientists from multiple institutions. Autism spectrum disorders are the focus here, not any single scientific group’s accomplishment. What we've shown within a year is that when people work together toward a common goal, we can speed up our understanding of these disorders and move towards better ways to help individuals with autism spectrum disorders and their families.”

About the Autism Consortium:

The Autism Consortium involves a group of leading universities and medical centers in the Boston area. The Consortium includes families, researchers and clinicians who have joined together to radically accelerate research and enhance clinical care for autism spectrum disorders. A private nonprofit, funded entirely by donors, the Consortium is ground-breaking in a number of ways. We focus on families, linking them to the resources they need and supporting them in participating in research studies to understand and treat autism spectrum disorders. The Consortium brings together the best minds across Boston, from Beth Israel Deaconess Medical Center, Boston Medical Center, Boston University, Boston University School of Medicine, Broad Institute of MIT and Harvard, Cambridge Health Alliance, Children’s Hospital Boston, Harvard University, Harvard Medical School, Massachusetts General Hospital, Massachusetts Institute of Technology, McLean Hospital and Tufts-New England Medical Center.

About Autism Speaks:

Autism Speaks is dedicated to increasing awareness of autism spectrum disorders, to funding research into the causes, prevention, treatments and cure for autism, and to advocating for the needs of affected families. It was founded in February 2005 by Suzanne and Bob Wright, the grandparents of a child with autism. Bob Wright is Vice Chairman, General Electric, and served as chief executive officer of NBC for more than twenty years. Autism Speaks has merged with both the National Alliance for Autism Research (NAAR) and Cure Autism Now (CAN), bringing together the nation’s three leading autism advocacy organizations.

About the Broad Institute of MIT and Harvard:

The Broad Institute of MIT and Harvard was founded in 2003 to bring the power of genomics to biomedicine. It pursues this mission by empowering creative scientists to construct new and robust tools for genomic medicine, to make them accessible to the global scientific community, and to apply them to the understanding and treatment of disease. The Institute is a research collaboration that involves faculty, professional staff and students from throughout the MIT and Harvard academic and medical communities. It is jointly governed by the two universities.

Organized around Scientific Programs and Scientific Platforms, the unique structure of the Broad Institute enables scientists to collaborate on transformative projects across many scientific and medical disciplines. For further information about the Broad Institute, go to http://www.broad.mit.edu.

About Affymetrix, Inc:

Affymetrix Inc. (Nasdaq:AFFX) scientists invented the world's first high-density microarray in 1989 and began selling the first commercial microarray in 1994. The microarray technology is used by the world's top pharmaceutical, diagnostic and biotechnology companies, as well as leading academic, government and nonprofit research institutes. More information about Affymetrix can be found at http://www.affymetrix.com.

NOTE: Affymetrix, the Affymetrix logo and GeneChip(R) are registered trademarks owned or used by Affymetrix Inc.

Kathryn Morris | EurekAlert!
Further information:
http://www.autismconsortium.org
http://www.autismspeaks.org

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>