Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists set their sights on cure for AMD

06.06.2007
A groundbreaking surgical therapy capable of stabilising and restoring vision in the vast majority of patients who currently suffer blindness through Age-Related Macular Degeneration (AMD) is to be taken to clinical trial by scientists and clinicians at the UCL Institute of Ophthalmology, Moorfields Eye Hospital and the University of Sheffield. The therapy, using cells derived from human embryonic stem cells to replace the faulty retinal cells that cause AMD, will be developed by the London Project to Cure AMD, a collaborative project launched today bringing together some of the leading specialists in the field.

Around 25 per cent of over-60s in the UK have some degree of visual loss due to AMD, and some 14 million people in Europe currently suffer blindness through the condition, caused by defects in the retinal support cells. There is currently no treatment that prevents the treatment of dry AMD. There has been some success in controlling new blood vessel formation in wet AMD, but these approaches are only suitable for certain patients and are often only temporary.

Thanks to a £4 million donation from a US private donor, the London Project will now be able to assemble the necessary spectrum of scientists and clinicians, led by the UCL Institute of Ophthalmology, to accelerate the technique’s move from laboratory to clinic. The Project is open access and will be made completely available to scientists, clinicians and all those with an interest worldwide.

AMD is associated with defects of the retinal support cells – the retinal pigment epithelial cells (RPE). The rods and cones (the photoreceptors) in the retina, which are the light sensitive cells, depend for their survival on the normal functioning of these cells, and so failure of these cells leads to progressive loss of vision. In addition, the disease often provokes a scarring process at the back of the eye leading to the formation of new blood vessels within the retina which subsequently leak fluid resulting in exudative or so called “wet” AMD.

The London Project’s approach will involve production of a cell replacement therapy from human embryonic stem cells, which are effective in replacing dysfunctional RPE and photoreceptors found in AMD, leading to a surgical therapy capable of stabilising and restoring vision in the vast majority of patients. Surgical procedures already developed and trialled in a number of patients using the patients’ own cells have illustrated that a cell replacement therapy can work.

Professor Pete Coffey, UCL Institute of Ophthalmology and director on the London Project, said: “The London Project aims to deliver treatment for a disease which has no alternative therapy. Using stem cells – which are far more adaptable – can only improve success of what has already been achieved and in addition establish this as a global therapy. This is achievable as a result of bringing together a number of groups who previously were trying to solve the same problem in isolation. The Project aims to engage scientists, clinicians and the public to ensure success through actively attracting and promoting the inclusion of other laboratories, hospitals and institutions by an open access policy and by informing the public of progress.”

Dr Lyndon Da Cruz, lead clinician and consultant ophthalmic surgeon, Moorfields Eye Hospital, said: “The Project is important as it develops a cellular based therapy for a currently untreatable condition. The beauty of this Project is that there are three specialist groups working in parallel; a team in Sheffield, the UCL Institute of Ophthalmology and Moorfields Eye Hospital. Working in conjunction, they will be respectively safety testing the cells in Sheffield, confirming that the cells are RPE cells and preparing them in a form for transplant at the Institute of Ophthalmology, and developing the strategies for the surgery and patient selection based on studies on transplanting autologous RPE (i.e. cells from the patients' own eyes) at Moorfields.

“By driving these in parallel it is felt that the development time will be significantly reduced. Given that AMD could affect up to one third of the population by 2070, and that the bulk of these will have dry AMD, the potential to create a treatment strategy for this condition is critical and may have a major impact on vision loss in the community.”

Professor Ed Byrne, Dean of the UCL Faculty of Biomedical Sciences, said: “The launch of The London Project to Cure AMD reinforces UCL’s position at the forefront of stem cell research in the UK and beyond. We hope that like-minded individuals and organisations will continue to donate funds to world-class research projects such as this, which have the capability of developing life-changing treatments for diseases such as AMD.”

Professor Alistair Fielder, Senior Medical Adviser of Fight for Sight, the leading eye research charity, said: "We are excited about the work of Professor Pete Coffey and his team regarding developments in the treatment of AMD. The London Project represents a real chance to tackle this untreatable condition and bring hope to many. It is marvellous to think that clinical trials could start within five years."

Tom Bremridge, Chief Executive of The Macular Disease Society, said: “This development is exciting and encouraging for current and future generations of AMD patients. While treatments for ‘wet AMD’ are advancing rapidly, sadly patients with ‘dry AMD’ have had no prospect of any viable therapy. Our thanks and congratulations to the instigators of the London Project to Cure AMD.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>