Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK scientists set their sights on cure for AMD

06.06.2007
A groundbreaking surgical therapy capable of stabilising and restoring vision in the vast majority of patients who currently suffer blindness through Age-Related Macular Degeneration (AMD) is to be taken to clinical trial by scientists and clinicians at the UCL Institute of Ophthalmology, Moorfields Eye Hospital and the University of Sheffield. The therapy, using cells derived from human embryonic stem cells to replace the faulty retinal cells that cause AMD, will be developed by the London Project to Cure AMD, a collaborative project launched today bringing together some of the leading specialists in the field.

Around 25 per cent of over-60s in the UK have some degree of visual loss due to AMD, and some 14 million people in Europe currently suffer blindness through the condition, caused by defects in the retinal support cells. There is currently no treatment that prevents the treatment of dry AMD. There has been some success in controlling new blood vessel formation in wet AMD, but these approaches are only suitable for certain patients and are often only temporary.

Thanks to a £4 million donation from a US private donor, the London Project will now be able to assemble the necessary spectrum of scientists and clinicians, led by the UCL Institute of Ophthalmology, to accelerate the technique’s move from laboratory to clinic. The Project is open access and will be made completely available to scientists, clinicians and all those with an interest worldwide.

AMD is associated with defects of the retinal support cells – the retinal pigment epithelial cells (RPE). The rods and cones (the photoreceptors) in the retina, which are the light sensitive cells, depend for their survival on the normal functioning of these cells, and so failure of these cells leads to progressive loss of vision. In addition, the disease often provokes a scarring process at the back of the eye leading to the formation of new blood vessels within the retina which subsequently leak fluid resulting in exudative or so called “wet” AMD.

The London Project’s approach will involve production of a cell replacement therapy from human embryonic stem cells, which are effective in replacing dysfunctional RPE and photoreceptors found in AMD, leading to a surgical therapy capable of stabilising and restoring vision in the vast majority of patients. Surgical procedures already developed and trialled in a number of patients using the patients’ own cells have illustrated that a cell replacement therapy can work.

Professor Pete Coffey, UCL Institute of Ophthalmology and director on the London Project, said: “The London Project aims to deliver treatment for a disease which has no alternative therapy. Using stem cells – which are far more adaptable – can only improve success of what has already been achieved and in addition establish this as a global therapy. This is achievable as a result of bringing together a number of groups who previously were trying to solve the same problem in isolation. The Project aims to engage scientists, clinicians and the public to ensure success through actively attracting and promoting the inclusion of other laboratories, hospitals and institutions by an open access policy and by informing the public of progress.”

Dr Lyndon Da Cruz, lead clinician and consultant ophthalmic surgeon, Moorfields Eye Hospital, said: “The Project is important as it develops a cellular based therapy for a currently untreatable condition. The beauty of this Project is that there are three specialist groups working in parallel; a team in Sheffield, the UCL Institute of Ophthalmology and Moorfields Eye Hospital. Working in conjunction, they will be respectively safety testing the cells in Sheffield, confirming that the cells are RPE cells and preparing them in a form for transplant at the Institute of Ophthalmology, and developing the strategies for the surgery and patient selection based on studies on transplanting autologous RPE (i.e. cells from the patients' own eyes) at Moorfields.

“By driving these in parallel it is felt that the development time will be significantly reduced. Given that AMD could affect up to one third of the population by 2070, and that the bulk of these will have dry AMD, the potential to create a treatment strategy for this condition is critical and may have a major impact on vision loss in the community.”

Professor Ed Byrne, Dean of the UCL Faculty of Biomedical Sciences, said: “The launch of The London Project to Cure AMD reinforces UCL’s position at the forefront of stem cell research in the UK and beyond. We hope that like-minded individuals and organisations will continue to donate funds to world-class research projects such as this, which have the capability of developing life-changing treatments for diseases such as AMD.”

Professor Alistair Fielder, Senior Medical Adviser of Fight for Sight, the leading eye research charity, said: "We are excited about the work of Professor Pete Coffey and his team regarding developments in the treatment of AMD. The London Project represents a real chance to tackle this untreatable condition and bring hope to many. It is marvellous to think that clinical trials could start within five years."

Tom Bremridge, Chief Executive of The Macular Disease Society, said: “This development is exciting and encouraging for current and future generations of AMD patients. While treatments for ‘wet AMD’ are advancing rapidly, sadly patients with ‘dry AMD’ have had no prospect of any viable therapy. Our thanks and congratulations to the instigators of the London Project to Cure AMD.”

Dominique Fourniol | alfa
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>