Scientists debate the neurobiological underpinnings of amnesia

This has been a vexed question for more than 30 years. Most psychologists tended to support the retrieval-deficit explanation, while neuroscientists interested in how memories work at a molecular and cellular level backed the idea of storage-failure.

This disconnect has limited both scientific and clinically relevant advances. But in a collection of articles published today by the journal Learning & Memory, leaders in the field of memory studies have thoughtfully reconsidered the enigma of amnesia, as well as the methodological and conceptual problems in its study. They point out how studies of amnesia have been important in forming our current understanding of how memory works, and they propose novel ways of experimentally evaluating the neurobiological basis of memory impairment. The resulting section, entitled “The Neurobiology of Amnesia,” includes eight articles, all of which are available online today at www.learnmem.org.

“Questions about the nature of amnesia are ultimately biological questions,” explains Dr. Larry Squire, Professor of Psychiatry at the University of California, San Diego, and one of the contributors to the special section. “But some of the best-known and most-often-cited evidence is founded on a behavioral-psychological level of analysis. What we really need to be asking is: 'In amnesia, what actually happens to the synaptic changes that carry the memory?'”

“There is evidence that bears on that question,” says Dr. Squire. In an experimental setting, animals can “recover” from amnesia under a variety of conditions, something that should be impossible if the memory was not initially stored. But the major challenge is to experimentally assess whether an animal has truly recovered a memory or simply re-learned a task.

Because amnesia is rarely complete and there is often some residual performance ability, it can be argued by supporters of the storage-failure theory that any “recovery” from amnesia reflects new learning added onto the residual memory. The retrieval-failure theory cannot easily be attacked because one can argue that a memory remains inaccessible until the appropriate retrieval cues are provided.

Dr. Karim Nader, Professor of Psychology at McGill University (Canada), is the guest editor of the Learning & Memory special amnesia section. “This compilation of articles brings many of the perspectives concerning the nature of amnesia side-by-side for consideration,” he says. “We hope that it will inspire readers to think of new ways to bridge the different positions and levels of analyses, and that it will give new momentum to the search for answers to the fundamental nature of amnesia.”

Media Contact

Maria Smit EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors