Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reins and Spurs for the Immune System

16.08.2006
How Disruptions of T Cell Balance Induce Severe Intestinal Inflammation
A finely tuned equilibrium between aggressive and inhibitive immune cells ensures that the intestinal mucosa remains healthy and functional.

Scientists at the Helmholtz Centre for Infection Research in Braunschweig, however, have studied on mice what happens when the normal interaction between these cells is disrupted: severe intestinal inflammation, whose symptoms closely resemble human autoimmune diseases, such as Morbus Crohn or Colitis ulcerosa.

"The intestinal surfaces form a border between the insides of the human body and the outside world, and they present our immune system with a monumental task," explains Dr. Astrid Westendorf, a researcher at the Helmholtz center. "Bacteria and other disease-causing pathogens that attempt to penetrate the body must be vehemently repelled at this point," she says. "On the other hand, nutrients, as well as the body's own cells and molecules, must not induce an immune reaction. Otherwise, a severe inflammation could result which might, in the long term, cause serious damage, and in some cases, even destroy the intestinal mucosa."

Dramatic Symptoms

This is exactly what happens with so-called Villin HA-mice, which were studied by Westendorf and her colleagues. "These animals belong to a genetically altered strain that possess a molecule known as hemagglutinin, or HA, on the cells of their intestinal mucosa," she says. Westendorf injected these animals with immune cells from the blood of other mice strains that specifically produced immune cells targeting HA. The result: the immune cells attacked the intestinal surface and induced dramatic symptoms similar to those of patients with chronic intestinal inflammation.

A Surprising Tolerance

When these two strains of mice are cross-bred, however, they produce something astonishing: "The progeny have both the HA on the intestinal surface as well as the special immune cells against HA in their blood, and yet, they remain healthy," notes Westendorf. The reason for this phenomenon, known as "immune tolerance", is probably the so-called regulatory T cells, or TREG , which are specific inhibitors of the immune system that shut down other defense cells before they go too far with their attacks and cause harm to the body. "These TREG must have developed in the animals in the course of their lives," says Dr.

Westendorf. They keep the defense cells in check, most of which are the CD4+ or CD8+ type T cells, since these would otherwise attack the always present components of their own intestinal surface.

Complex Interaction

"The constant interaction between aggressive T cells and inhibiting TREG keeps the immunological balance of our intestinal mucosa intact," explains Prof. Dr. Jan Buer, work group leader at the Helmholtz Centre for Infection Research. "Many chronic, inflammatory intestinal ailments occur because this balance no longer functions," he says. Buer hopes that a better understanding of the processes involved could open up opportunities to selectively turn immune system responses up or down. "That," he says, "could lead to possible therapies for autoimmune diseases, like Morbus Crohn, but also tumors and infections in which the immune reaction needs to be selectively activated."

Manfred Braun | alfa
Further information:
http://www.gbf.de

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>