Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meth Promotes Spread of Virus in HIV-Infected Users

08.08.2006
Researchers at the University at Buffalo have presented the first evidence that the addictive drug methamphetamine, or meth, also commonly known as "speed" or "crystal," increases production of a docking protein that promotes the spread of the HIV-1 virus in infected users.

The investigators found that meth increases expression of a receptor called DC-SIGN, a "virus-attachment factor," allowing more of the virus to invade the immune system.

"This finding shows that using meth is doubly dangerous," said Madhavan P.N. Nair, Ph.D., first author on the study, published in the online version of the Journal of Neuroimmune Pharmacology. The study will appear in print in the September issue of the journal.

"Meth reduces inhibitions, thus increasing the likelihood of risky sexual behavior and the potential to introduce the virus into the body, and at the same time allows more virus to get into the cell," said Nair, professor of medicine and a specialist in immunology in the UB School of Medicine and Biomedical Sciences.

His research centers on dendritic cells, which serve as the first line of defense again pathogens, and two receptors on these cells -- HIV binding/attachment receptors (DC-SIGN) and the meth-specific dopamine receptor. Dendritic cells overloaded with virus due to the action of methamphetamine can overwhelm the T cells, the major target of HIV, and disrupt the immune response, promoting HIV infection.

"Now that we have identified the target receptor, we can develop ways to block that receptor and decrease the viral spread," said Nair. "We have to approach this disease from as many different perspectives as possible.

"If we could prevent the upregulation of the meth-specific dopamine receptor by blocking it, we may be able to prevent the interaction of meth with its specific receptors, thereby inhibiting the virus attachment receptor," said Nair.

"Right now, we don't know how the virus-attachment receptor and meth-specific receptors interact with each other, leading to the progression of HIV disease in meth-using HIV-infected subjects. That is the next question we want to answer.

"Since meth mediates its effects through interacting with dopamine receptors present on the cells, and meth increases DC-SIGN, which are the HIV attachment receptors, use of dopamine receptor blockers during HIV infection in meth users could be beneficial therapeutically to reduce HIV infection in these high-risk populations," Nair said.

Additional researchers on the publication, all from the UB Department of Medicine, are Supriya Mahajan, Ph.D., research assistant professor; Donald Sykes, Ph.D., research associate professor; Meghana V. Bapardekar, Ph.D., postdoctoral associate, and Jessica L. Reynolds, Ph.D., research assistant professor.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. The School of Medicine and Biomedical Sciences is one of five schools that constitute UB's Academic Health Center.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>