Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indoor air purifiers that produce even small amounts of ozone may be risky for health

10.05.2006


Scientists verify that ionic and other air purifiers add to pollutants already in a room in levels that can exceed health standards



In a small, poorly ventilated room, an indoor air purifier that produces even a few milligrams of ozone per hour can create an ozone level that exceeds public health standards, researchers at UC Irvine have found.

Scientists also discovered that ozone produced by air purifiers adds to ozone already present in any room – a prediction that had never been experimentally verified in a realistic indoor environment.


“These results mean that people operating air purifiers indoors are more prone to being exposed to ozone levels in excess of public health standards,” said Sergey A. Nizkorodov, assistant professor of chemistry in the School of Physical Sciences at UCI.

Nizkorodov and UCI chemistry students Nicole Britigan and Ahmad Alshawa published their research in the current issue of the Journal of the Air & Waste Management Association. Their findings will be studied by officials deciding how to regulate the distribution of indoor air purifiers.

California lawmakers are considering legislation that would require the California Air Resources Board to adopt regulations to reduce emissions from indoor air cleaners by 2008. The state board and the U.S. Environmental Protection Agency have issued advisories discouraging use of air purifiers, but the devices remain on the market because no agency has the outright authority to regulate how much ozone they produce.

Indoor air purification has gained widespread popularity with the surge in air pollution problems in urban areas.

Air purifiers target dust, pollen, airborne particles and volatile organic compounds, which are emitted by a wide range of products, including paint, cleaning supplies and pesticides. These pollutants are believed to aggravate respiratory and other health problems.

Indoor air purifiers are advertised as safe household products for health-conscious people – especially those who suffer from allergies and asthma – but some purifiers produce ozone during operation. For example, certain widely used ionic air purifiers, which work by charging airborne particles and electrostatically attracting them to metal electrodes, emit ozone as a byproduct of ionization.

Depending on the design, some ionic purifiers emit a few milligrams of ozone per hour, which is roughly equal to the amount emitted by a dry-process photocopier during continuous operation.

Ozone can damage the lungs, causing chest pain, coughing, shortness of breath and throat irritation. It can also worsen chronic respiratory diseases such as asthma and compromise the ability of the body to fight respiratory infections – even in healthy people.

For this study, the research group tested several types of air purifiers for their ability to produce ozone at 40 percent to 50 percent relative humidity in various indoor environments, including offices, bathrooms, bedrooms and cars.

Placed inside a room, the air purifier was turned on, and the ozone concentration buildup was tracked until a steady level of ozone was reached. In many cases, indoor ozone levels far exceeded outdoor safety guidelines, which in California are 90 parts per billion for one hour and 70 parts per billion for eight hours.

The ozone level in some instances reached higher than 350 parts per billion – more than enough to trigger a Stage 2 smog alert if similar levels were detected outside. A Stage 2 alert last occurred in the Southern California coastal air basin in 1988.

Of the spaces tested, the largest increase in steady ozone levels occurred in small rooms with little ventilation, especially those containing materials that react slowly with ozone such as glossy ceramic tile, PVC tile and polyethylene, which is used in plastic. Ozone reacts quicker with materials such as carpet, cloth, rubber and certain metals, destroying itself in the process.

People who operate purifiers indoors are more likely to be exposed to ozone levels that exceed health standards because ozone from these devices adds to ozone that already exists in the room.

Said Nizkorodov: “If 30 parts per billion of ozone exist in the room because dirty outside air is leaking into the house, turning on an air purifier that generates 50 parts per billion of ozone creates a total ozone level of 80 parts per billion.”

About AirUCI: Nizkorodov is a researcher with AirUCI – Atmospheric Integrated Research Using Chemistry at Interfaces – a multi-investigator effort led by chemistry professor Barbara Finlayson-Pitts to better understand how air and water interact in the atmosphere and how those processes affect air quality and global climate change. In 2004, UCI was awarded a total of $7.5 million over five years from the National Science Foundation to establish AirUCI, an Environmental Molecular Science Institute – one of only seven currently funded EMSIs dedicated to understanding at the molecular level how human activity and nature contribute to global environmental problems.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion.

Jennifer Fitzenberger | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.uci.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>