Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targeted treatment for brain tumors shows promise in pre-clinical models

16.02.2006


Monoclonal antibody targets key tumor growth factor; Successfully causes brain tumor regression and improves animal survival



Gliomas are the most common primary brain tumors, and also one of the most complicated cancers to treat. Currently, treatment options such as surgery, radiation and chemotherapy are only marginally beneficial and present significant risks for patients, including loss of physical and cognitive abilities. But, a new study published today in Clinical Cancer Research found that treatment with a novel monoclonal antibody (mAb) L2G7 inhibited the growth of glioma cells, induced glioma regression within the brain and prolonged survival – a finding that could be translated into human trials as early as next year.

"There is a tremendous need for advancement in the treatment of malignant brain tumors, which are the number one cancer killer of children under age 20 and a devastating diagnosis for adults as well," said Dr. John Laterra, M.D., Ph.D., research scientist at the Kennedy Krieger Institute and senior author of the study. "The results of this study bring us closer to developing an alternative treatment option for both adults and for pediatric patients, who are hardest hit by conventional therapies."


A team of researchers, led by Dr. Jin Kim of Galaxy Biotech, LLC in Mountain View, CA and Dr. John Laterra of the Kennedy Krieger Institute in Baltimore, MD, designed the study to evaluate the effectiveness of L2G7 in treating human gliomas implanted in mouse models. Results indicate that treatment with L2G7 completely inhibited the growth of the tumors when established under the skin of animals, while control mAb had only a minimal effect. Even more promising results were observed in mice with tumors implanted within the brain. In this setting, L2G7 not only induced tumor regression, but dramatically increased survival. Animals treated with the control all died within 41 days of starting the experiment. All mice treated with L2G7 survived through day 70, and 80% of the animals were alive at day 90, six weeks after stopping the L2G7 treatment.

L2G7 was developed by Dr. Kim’s team to inhibit the activities of hepatocyte growth factor (HGF). HGF is known to be a promising target for cancer therapy by virtue of its multiple actions that promote cancer malignancy. HGF stimulates tumor cell division, tumor angiogenesis (blood vessel formation) and tumor cell resistance to toxic agents such as chemotherapy and radiation. In this study, brain tumor cells were injected both under the skin and within the brain to specifically evaluate anti-tumor responses within the central nervous system. The central nervous system is a location often protected from cancer therapies by the "blood-brain barrier," which could possibly limit the effects of mAb therapy on tumors situated within the brain. Treatment with L2G7 or a control mAb was given to both subsets of mice twice weekly.

In one experiment, the researchers delayed treatment of a subset of mice for 18 days to determine the effect of L2G7 on larger, more advanced tumors within the brain. At that time, the average tumor size was 26.7 mm3, but following only three doses of L2G7, tumors shrank to 11.7 mm3. Conversely, tumors treated with the control mAb grew 5-fold to 134.3 mm3 during the same period, with a mean volume 12 times larger than the L2G7-treated tumors.

"Monoclonal antibodies to growth factors or their receptors are playing an increasingly important role in cancer therapy," said Dr. Cary Queen, President of Galaxy Biotech. "Because of its specificity for HGF, L2G7 may prove to be particularly effective at halting tumor growth while minimizing side effects and harm to the surrounding healthy brain cells."

"Our company is committed to the clinical development of L2G7, and we hope to extend the current success of targeted antibody therapies in the treatment of breast, colon and lung cancer patients to the treatment of serious central nervous system malignancies such as gliomas."

In a related study (Lal et al., Clin Cancer Res. 11:4479-4486, 2005), Dr. Laterra’s research team showed that targeting brain tumor HGF with gene therapy can substantially enhance the anti-tumor effects of radiation therapy, again emphasizing the important role HGF plays in brain tumors.

Emily Butler | EurekAlert!
Further information:
http://www.kennedykrieger.org/
http://www.spectrumscience.com

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>