Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop portable ’vein finder’ for faster, more accurate injections

18.01.2006


When medics are treating trauma patients, every second counts. Yet bruises, burns, and other physical conditions often make it difficult to locate veins and administer lifesaving drugs or solutions.



A team of Georgia Tech researchers, including research engineer Francois Guillot in the School of Mechanical Engineering, is developing an inexpensive, handheld device that uses Doppler ultrasound technology to find veins quickly.

In response, a team of Georgia Institute of Technology researchers is developing an inexpensive, handheld device that uses Doppler ultrasound technology to find veins quickly.


“Depth and angle are the critical issues for vessel detection,” says project leader Michael Gray, a research engineer at the Electro-Optical (EOSL) Systems Laboratory within the Georgia Tech Research Institute (GTRI). “Even if you locate a vein at the skin’s surface, it’s still easy to miss when you try to insert a needle into the tissue below.”

The Doppler effect is a phenomenon that occurs when electromagnetic and sound waves interact with a moving object, altering wavelengths and frequency. For example, a police radar gun sends microwave signals to a moving car, and when signals bounce back, the change in their frequency provides a measurement used to determine the vehicle’s speed.

Doppler ultrasound is similar, except that acoustical waves are transmitted. Compared to static skin and tissue, blood is a moving substance, so ultrasonic waves reflected from blood vessels have different characteristics than transmitted ones, providing critical 3-D information about a vein’s location.

Hospitals have sophisticated ultrasound systems to evaluate the heart, valves and vessels for general blood-flow studies. But this kind of equipment is impractical and too costly for field use.

“Although the use of Doppler technology isn’t new, the novel aspect of our vein finder is the system’s design, which makes it both portable and economical,” says Peter Rogers, a professor in Georgia Tech’s School of Mechanical Engineering.

The patent-pending vein finder is composed of two parts: A reusable unit houses the electronics and signal processing components, while a disposable coupler box holds a reflector and needle guide. The needle guide is positioned parallel to the sound beam being transmitted by a transducer in the device’s reusable section.

As medics move the device along a patient’s arm or leg, the transducer emits a thin acoustical beam, about the size of pencil lead, into the reflector. Then the reflector directs the ultrasonic waves into the patient’s skin at a slight angle. The device can determine the direction of blood flow to distinguish arteries (which carry blood away from the heart) from veins (which carry blood to the heart). Once the device detects a vein, an alarm is triggered, and medics insert the needle.

The vein finder has proved highly effective in initial tests on phantom tissue, a model that simulates human tissue and blood vessels. Researchers have now begun adapting the device for human use.

Developing the user-friendly vein finder has been a deceptively complex task.

"One reason it’s so challenging is that we’re using very simple components to keep costs down,” notes Francois Guillot, a research engineer in the School of Mechanical Engineering.

Unlike large ultrasound systems used by hospitals for general blood-flow studies, the vein finder is targeting a very small area of the body. “That means the acoustical beam has to be smaller,” says Jim Larsen, a research engineer in EOSL. Another complication is that only a small amount of energy, about 1/10,000 of transmitted waves, scatters off the vein.

“So you’re limited in how much energy you can put in and how much you can pick up,” he adds. “Cost, size and power issues restrict us to using a single sensor, which limits the type of signal processing we can do to eliminate the scattering effects.”

Once the system is successfully adapted for humans, data processing and electronics will be miniaturized in a prototype for field-testing. The researchers envision the final product will be about the size of a fat fountain pen.

Compared to existing devices on the market that try to locate veins with lights or heat strips, the GTRI-developed system will be faster and more reliable, says Connell Reynolds, founder of Reynolds Medical Inc., a medical device manufacturer in Fairburn, Ga., that is sponsoring the project.

A former paramedic, Reynolds says the vein finder will be invaluable for a variety of medical users, including ambulance services, hospital emergency rooms, clinics, the military and nursing homes.

“For example, IV (intravenous) insertion is especially difficult in dehydrated patients because their blood vessels lack normal volume,” he explains. “Similarly, because cardiac patients’ hearts aren’t pumping properly, their veins are hard to locate. It’s also difficult to find veins in obese people and young children because their vessels are covered by layers of fat.”

In addition to speed, the vein finder’s accuracy will make treatment easier for hospital patients who need ongoing IVs or blood work.

Larsen recalls a hospital stay of his own that required numerous blood tests. This resulted in swelling and inflammation in his arms, making it increasingly more difficult for nurses to find his veins. “It often took seven or eight tries,” he says. “It wasn’t long before I felt like a pin cushion.”

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>