Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking Research Into Deadly Diseases

09.12.2005


Pioneering research by a North East scientist could lead to a cure for some of the most deadly antibiotic-resistant diseases.

Toxic Shock, Septicemia and the flesh-eating disease necrotizing faciitis are just some of the potentially fatal invasive infections caused by the streptococcus bacterium, which has increased significantly over the past 10 years.

Until now, scientists have not understood what turns this ordinary bacterium – which is best known as the cause of sore throats - into something horrendous that can cause very invasive and potentially fatal diseases.



Now, Dr Gary Black, and a team from Northumbria University’s School of Applied Sciences, has isolated one of the main enzymes implicated in disease - known as a hyaluronidase, HylP1. In a process similar to the one used in DNA testing, pure enzymes were produced in large quantities, by isolating the gene and then inserting it into a safe micro-organism for production.

Once the genes were cloned, the enzyme it produces, HylP1, was crystallised and then taken to the University of York – one of only a few UK centres specialising in structural biology - where Dr Black worked with scientists to solve the shape of the enzyme. There, he discovered its rare triple-stranded beta-helix shape, which is similar to only four other enzymes out of the thousands tested in recent years. He says:

“Solving the three dimensional structure of the enzyme means we have a better understanding of how the enzymes bind to other matter and how they work. We need to understand how the enzyme works to understand how we can stop it”.

Dr Black’s findings are published this week in Proceedings of the National Academy of Sciences of the United States of America (PNAS), one of the world’s most cited multidisciplinary scientific serials. Set up in 1914, it publishes cutting-edge research and spans biological, physical and social sciences.

Dr Black now hopes one of the world’s leading pharmaceutical companies will take up his research and use his findings to develop revolutionary life saving drugs. He says: “This is a major breakthrough which has the potential to save thousands of lives in the future.”

Dr Black, 39, from County Durham, did a post-doctorate at Newcastle University and was a lecturer at Sunderland University before joining Northumbria University’s School of Applied Sciences five years ago.

He started this pioneering research when he joined Northumbria and has been assisted by PhD student Anna-Marie Lindsay and the now qualified Dr Nicola Smith.

Professor John Ditch, Deputy Vice Chancellor (Research and Consultancy) at Northumbria University recognised the importance of this ground-breaking research when he awarded Dr Black a Promising Research Fellowship grant last year.

He says: “This is a very exciting research project with the potential to save lives in the future. Dr Black and his team have shown immense dedication and have forged great links with the University of York to develop and refine the research findings. Dr Black has acted as Principal Supervisor to two PhD students during the research and the University is delighted to have been able to support such a major breakthrough, with an investment of £75,000 over five years.”

Ruth Laing | alfa
Further information:
http://www.pnas.org
http://www.northumbria.ac.uk

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>