Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renewed hope for Parkinson’s patients

04.07.2005


Analysis of the brain of a patient suffering from Parkinson’s disease has shown for the first time that an experimental treatment can reverse the loss of nerve fibres.



Analysis of the brain of a patient suffering from Parkinson’s Disease has shown that the experimental treatment he received caused regrowth of the nerve fibres that are lost in this disease. The findings are reported in the July issue of Nature Medicine.
This is the first time that any treatment has been shown to reverse the loss of nerve fibres in Parkinson’s Disease.

The 62-year-old man was one of five patients in a pilot study carried out by Mr Steven Gill at Frenchay Hospital in Bristol, UK. In this study, an experimental drug (GDNF) was pumped through a fine catheter into a damaged part of the brain. Within a couple of months, patients were noticing dramatic improvements in their ability to move, and these continued over almost four years of treatment. Even after ceasing medication, the patients’ improvement has been maintained.



After the death of the 62-year-old patient from a heart attack, Professor Seth Love from Bristol University was able to examine his brain. Because the GDNF had been infused into one side of the brain only, the effects of the treatment could be assessed by comparing the two sides.

In Parkinson’s Disease, nerves containing the chemical messenger dopamine are lost from a region of the brain region known as the putamen, leading to tremors and other motor abnormalities characteristic of the disease.

Professor Love found that dopamine-containing nerve fibres had sprouted back in the putamen. He said: "This is the first neuropathological evidence that infusion of GDNF in humans causes sprouting of dopamine fibres, in association with a reduction in the severity of Parkinson’s Disease." The findings may revitalise interest in GDNF administration as a potential therapy for this degenerative condition, providing renewed hope for patients disappointed by the recent withdrawal of this drug due to concerns about its safety.

GDNF, which stands for glial cell line-derived neurotrophic factor, is a natural growth agent needed by brain cells to produce dopamine, which transmits impulses between certain nerve cells including those that regulate movement. A reduced concentration of dopamine in the brain is associated with Parkinson’s Disease.

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Some brain tumors may respond to immunotherapy, new study suggests

11.12.2018 | Studies and Analyses

Researchers image atomic structure of important immune regulator

11.12.2018 | Health and Medicine

Physicists edge closer to controlling chemical reactions

11.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>