Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor warns of gastrointestinal problems

17.05.2005


Dutch researcher Sebastiaan Herber has developed a sensor which can detect poor blood circulation in the stomach. A high level of carbon dioxide in the stomach is a characteristic of this so-called gastrointestinal ischaemia. By measuring this concentration the sensor can indicate how good or bad the circulation in the stomach wall is.

The main components of the sensor are a pH-sensitive polymer (hydrogel) and a micro pressure sensor. The polymer contains a large quantity of water and shrinks or swells in response to the changing pH-value. It is sandwiched between the micro pressure sensor and a porous, silicon cover. The cover contains a reservoir with bicarbonate electrolyte, covered by a gas-permeable membrane.

Carbon dioxide flows from the stomach through the gas-permeable membrane into the electrolyte, where it initiates a reaction that lowers the pH-value. The pH-sensitive polymer tries to swell in response to this. However, because it is in a confined space it exerts a pressure which the pressure sensor subsequently measures. Conversely, if the carbon dioxide concentration falls, the pH-value increases and the pressure generated by the polymer decreases.



Due to its small size (2.9 mm x 0.9 mm x 0.7 mm) the sensor easily fits in a catheter tip. The catheter is inserted via the nose into the stomach and remains there until the measurement has been completed. Herber developed his sensor to detect gastrointestinal ischaemia at an early stage. Gastrointestinal ischaemia can cause pain after eating, pain after physical exertion, diarrhoea, nausea and a possibly serious loss in weight.

Future plans

Measurements under laboratory conditions have yielded highly promising results to date. New measurements will shortly be carried out at the Medische Spectrum Twente hospital: a 24-hour measurement and an exertion measurement on a home trainer. The sensor is resistant to hydrochloric acid because in both cases it will remain in the stomach for some time. For the measurements, Herber is developing a prototype catheter in cooperation with Sentron Europe BV. They want to produce the sensor, if the measurements prove to be successful.

Interest has also been expressed in using the sensor to measure carbon dioxide levels in the brains of intensive care patients, as this can provide information about the patient’s recovery. Further the sensor can be adapted to measure other substances such as glucose or specific ions.

Sebastiaan Herber’s research is being funded by Technology Foundation STW.

Sebastiaan Herber | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6C8CJF_Eng

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>