Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ophthalmologists implant five patients with artificial silicon retina microchip

29.04.2005


Solar Cell Implant May Restore Some Sight for the Blind



Ophthalmologists at Rush University Medical Center implanted Artificial Silicon Retina (ASR) microchips in the eyes of five patients to treat vision loss caused by retinitis pigmentosa (RP). The implant is a silicon microchip 2mm in diameter and one-thousandth of an inch thick, less than the thickness of a human hair. Four patients had surgery Tuesday, January 25. The fifth patient is scheduled for a later date.

Rush principal investigator Dr. John Pollack performed the surgeries with Dr. Kirk Packo, Dr. Pauline Merrill, Dr. Mathew MacCumber, and Dr. Jack Cohen. All are members of Illinois Retina Associates, S.C., a private practice group and are on the Rush faculty. Patients leave the hospital the same day and will be followed for two years as part of the study, and then indefinitely. The patients were recruited from a pool of about 5,000 applicants.


The implants are designed for people with retinal diseases such as macular degeneration and retinitis pigmentosa, which cause blindness and vision impairment in about 10 million Americans. More than one million of these people are legally blind.

"As is commonly seen in with retinitis pigmentosa, these patients all have severe narrowing of their visual fields down to a very small central circle, and all patients in the study are legally blind," says Pollack.

The Artificial Silicon RetinaTM (ASR) was invented by Dr. Alan Chow, pediatric ophthalmologist and Rush faculty member, who developed the chip and founded Optobionics, with his brother Vincent, vice president of engineering. Optobionics is located in Naperville, Illinois.

"This is an expansion of the study of the first 10 patients completed in 2002," says study investigator Dr. Kirk Packo, who oversees the three participating sites. The sites are Johns Hopkins School of Medicine, Baltimore, Emory University School of Medicine/Atlanta VA Medical Center and Rush.

Pollack says the current protocol has been modified to reduce the likelihood of inadvertant scientific bias. "We operated on the right eye of each of the initial 10 patients. For the next 20 patients we will randomly select which eye will receive the ASR chip. In addition, post-operative vision testers will be masked as to which eye received the ASR chip implant. The current study is being performed at these study centers in order to independently validate previous studies performed by Optobionics."

The first 10 patients all reported some degree of improvement in visual function, says Pollack. "Improvement in visual function was variable and included the ability to read letters, improvement in color vision, and expansion of their visual field. Some patients gained new ability to recognize facial features -- something that they were unable to do before ASR chip implantation. Some patients have experienced improvement in activities of daily living such as improved ambulation-not bumping into objects around the house, and reading the time on a clock."

Still in Phase II clinical trials, Pollack cautions it is still too early to determine what percentage of patients might experience improvement in vision and what resolution capability these patients might eventually have. "Although we hope that all patients receiving the chip will experience some improvement in visual function, we can’t say for sure how these patients will respond to this new treatment since this is still an experimental trial. If this study and future studies show safety and efficacy of the chip and it’s approved by the FDA, it could be as soon as three to five years that this technology would be available to others."

Surgical Information

The ASR chip contains approximately 5,000 microscopic solar cells that convert light into electrical impulses. The purpose of the chip is to replace damaged photoreceptors, the "light-sensing" cells of the eye, which normally convert light into electrical signals within the retina. Loss of photoreceptor cells occurs in persons with retinitis pigmentosa (RP) and other retinal diseases.

The microsurgical procedure starts with three tiny incisions in the white part of the subject’s eye, each incision no larger than the diameter of a needle. Through these incisions, the surgeons insert a miniature cutting and vacuuming device that removes the gel in the middle of the eye and replaces it with saline. They then make a pinpoint opening in the retina through which they inject fluid to lift up a portion of the retina from the back of the eye, creating a small pocket in the "subretinal space" just wide enough to accommodate the ASR.

The surgeons then enlarge the pocket opening and insert the implant into the subretinal space. Finally, they reseal the retina over the ASR, insert air into the middle of the eye to gently push the retina back down over the device, and close the incisions. Over a period of 1 week the air bubble is resorbed and replaced by fluids created within the eye.

According to Chow, "The use of the subretinal space to hold a device that artificially stimulates the retina seems a logical step in replacing the loss of photoreceptor cells of the retina. If the implant is tolerated well and is able to successfully stimulate the retina, it may open up new opportunities for restoring sight in patients with the end stages of retinitis pigmentosa."

Mary Ann Schultz | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>