Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long Term Benefit To Amputees From EU Funded Project

24.01.2005


People who need artificial limbs to help with their day-to-day living are among those who are likely to benefit from a project funded with the help of €1.974 million (euros) from the Information Society Technologies area of the EUs Framework Programme.



The MOL SWITCH project set out to build a single-molecule DNA sequencing device and a MOLecular magnetic SWITCH that links the biological and silicon worlds. This nano-switch combines a biological motor and a moving magnetic bead that will help in the development of biosensors, ‘new generation’ prosthetics and provide a means to move artificial limbs by changing the mechanism of interfacing humans and computers.

“The Mol Switch Project is one of the most successful research projects I have been involved with”, says project co-ordinator Keith Firman, from the University of Portsmouth. “Our original aim was to produce a device that could link the biological world and the silicon world through the use of a biological molecular motor. As such it was always an ambitious project and that is why we sought funding from the EU. The concept was based on the idea of a simple molecular dynamo - the molecular motor would move a magnetic bead, attached to DNA, past a sensor, which would ’switch’ a sensor producing electrons that could switch a silicon device such as a computer. The potential use of such a device might be to activate artificial limbs from existing muscle of an amputee, to fly aircraft under high G-force, or as a generic biosensor - the uses are wide varying.


”We have already shown that we can use the motor to move the magnetic bead, that the movement is highly processive (in terms of how much DNA is moved in one go by the enzyme, before it releases and attaches again to move the DNA again - as required for such a device) and that we can also self-assemble the motor on a surface - allowing us to produce the device on a chip, over and over again (as required). However, we have also shown that this motor could be used in a wide range of devices (as a nanoactuator), from a biosensor through to a single-molecule, DNA sequencing device. The potential for such a nanoactuator is a cheap, biodegradable motor that can be used across a wide range of biochips to enable controlled movement of materials.”

The MOL SWITCH project brings together six partners from the UK, France, the Netherlands, Italy and the Czech Republic and is funded as part of the Future and Emerging Technologies (FET) Scheme within IST. This is designed to promote research that is of a long-term nature or involves particularly high risks, compensated by the potential of a significant societal or industrial impact. “This project is a perfect example of what FET was set up to do”, says Peter Walters, FP6UK National Contact Point for IST. “Its success will have a significant impact in a number of areas but especially for the hundreds of people who require artificial limbs to simply go about their daily lives.

“The current Framework Programme (FP6) runs until 2006 and organisations wanting free information on how to access some of the €19bn available should log on to http://fp6uk.ost.gov.uk or call central telephone support on 0870 600 6080.”

Dave Sanders | alfa
Further information:
http://fp6uk.ost.gov.uk

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>