Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer vaccines: A two-pronged attack?

18.01.2005


The latest findings in cancer vaccine development suggest that cancer vaccines may have two modes of action; specific immunization and non-specific activation of immune cells paralyzed by the tumor.



The human immune system fights cancer partly through the production of many populations of specialized immune cells called cytolytic T cells (CTL). Each CTL population recognizes a different, specific marker, an ’antigen’, on the cancer cell surface. Cancer vaccines are designed to tip the balance in favor of the immune system by stimulating the production of CTLs against the particular antigen in the vaccine. However, in back-to-back articles published today in the Journal of Experimental Medicine, investigators at the Brussels Branch of the Ludwig Institute for Cancer Research (LICR) and Brussel’s Louvain University have shown that a cancer vaccine not only specifically stimulates the production of CTLs against the vaccine antigen, it also non-specifically activates spontaneously produced CTL populations against multiple cancer antigens.

According to Dr. Thierry Boon, the Director of the LICR Brussels Branch, this observation opens a new way of thinking about how cancer vaccines might work. "We have always thought that cancer vaccines could only be effective if massive numbers of vaccine-specific CTLs were produced. But it seems that, in about 10% of patients with metastatic melanoma, the vaccine might actually be reawakening different CTL populations that have been effectively deactivated by the tumor."


The research team also found that metastases were enriched with inactive CTLs, and they are now assessing exactly how vaccination can ’spark’ the reactivation of CTLs. "We believe that these CTLs in the metastatic lesions could potentially eliminate the bulk of the tumor," says Dr. Boon. "Now we have to elucidate why this non-specific process works in some patients and not in others, and then to learn how to harness this effect to help even more people with cancer."

Sarah L. White | EurekAlert!
Further information:
http://www.licr.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>