New technique could lead to more effective therapies for AIDS
When researchers came up with the powerful cocktail of anti-HIV drugs known as highly active antiretroviral therapy (HAART), they hoped they had found a way to finally rid the body of the virus. But they were wrong. The virus instead goes into hiding, dormant and practically undetectable in the body – and impervious to attack. While HAART manages to keep the virus at bay, its still quite capable – given the right opportunity – of replicating and wreaking havoc on the bodys immune system.
Now, virologists at Jefferson Medical College, led by Roger J. Pomerantz, M.D., professor of medicine, biochemistry and molecular pharmacology and director of the Division of Infectious Diseases and Environmental Medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia, may have found a way to bring HIV out of hiding. They have shown that an immune cell protein called interleukin-7 (IL-7) can rouse the virus better than previously tried agents, making it vulnerable to drugs and the bodys immune system. If the new technique proves its mettle, the work could lead to improved treatments for HIV infection, and might be a step toward complete viral eradication.
Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu
Mechanism Discovered to Activate the Immune System against Bacteria and Regulate the Microbiome
13.02.2019 | Universitätsklinikum Tübingen
New diagnostic technique reveals a protein biomarker that accurately differentiates bladder cancer from benign inflammation
12.02.2019 | Elsevier
For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.
The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...
Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens
Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...
Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light
When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...
The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...
Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.
DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.
Anzeige
Anzeige
Global Legal Hackathon at HAW Hamburg
11.02.2019 | Event News
The world of quantum chemistry meets in Heidelberg
30.01.2019 | Event News
16.01.2019 | Event News
Gravitational waves will settle cosmic conundrum
15.02.2019 | Physics and Astronomy
Spintronics by 'straintronics'
15.02.2019 | Physics and Astronomy
Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | Life Sciences