Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson virologists coax HIV out of hiding

04.01.2005


New technique could lead to more effective therapies for AIDS



When researchers came up with the powerful cocktail of anti-HIV drugs known as highly active antiretroviral therapy (HAART), they hoped they had found a way to finally rid the body of the virus. But they were wrong. The virus instead goes into hiding, dormant and practically undetectable in the body – and impervious to attack. While HAART manages to keep the virus at bay, it’s still quite capable – given the right opportunity – of replicating and wreaking havoc on the body’s immune system.

Now, virologists at Jefferson Medical College, led by Roger J. Pomerantz, M.D., professor of medicine, biochemistry and molecular pharmacology and director of the Division of Infectious Diseases and Environmental Medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia, may have found a way to bring HIV out of hiding. They have shown that an immune cell protein called interleukin-7 (IL-7) can rouse the virus better than previously tried agents, making it vulnerable to drugs and the body’s immune system. If the new technique proves its mettle, the work could lead to improved treatments for HIV infection, and might be a step toward complete viral eradication.


The Jefferson team reports its findings January 4, 2005 in the Journal of Clinical Investigation.

Dr. Pomerantz, who is director of Jefferson’s Center for Human Virology and Biodefense, and his co-workers took blood cells from HIV-infected patients who had been taking HAART and who had undetectable levels of virus. Using a special technique, they screened the cells with several different drugs to determine what stimulated the latent virus the best. "To our surprise, it was IL-7," he says. "We don’t know why, but it is the best agent in terms of its ability to stimulate HIV out of latency that we’ve seen in the last 15 years." They found that the virus was stimulated to higher levels and was activated in more patients than with other compounds.

Dr. Pomerantz’s group also discovered that IL-7 appears to stimulate a group of sub-strains of HIV that are different than those brought out of latency by other agents, such as IL-2, another immune cytokine, or OKT3, a monoclonal antibody. He suspects such strains may be from an unknown viral reservoir in the blood. "IL-7 may teach us something," he says. "We’re not sure why only these certain strains are affected. We think we’ve found a new population, a new reservoir of HIV that has not been seen before. It’s probably a sub-population of blood cells, lymphocytes not stimulated by IL-2 or OKT3. There could be other reservoirs as well."

Ultimately, he says, the answer to the latency problem may entail using a combination of drugs. "We may need more than one drug to stimulate virus from latency, similar to using HAART to stop replication," he says, referring to this approach . "We may have to combine IL-2 with IL-7 and other agents to get to the reservoirs of virus."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>