Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system reduces risk of burns during interventional X-rays

06.12.2004


System helps physicians prevent radiation-induced skin injuries to patients



The threading of slender catheters and stents through arteries to deliver treatments to the heart, the brain and elsewhere in the body has produced nothing short of a medical revolution. But these delicate procedures require that patients be exposed to continuous radiation that can last up to an hour or more, sometimes causing skin injuries that, in rare cases, develop necrosis (tissue death), requiring skin grafts.

Now University at Buffalo researchers, working with an Amherst, N.Y., startup company called Esensors have developed a unique, real-time patient dose-tracking system, which lets physicians know when the accumulated radiation dose is approaching a dangerous threshold. The system is designed to be used either as a retrofit with existing fluoroscopy machines or to be included in the design of new machines.


Funded by grants totaling $814,000 from the U.S. Food and Drug Administration under the Small Business Innovation and Research program, the team of researchers is completing a prototype that will be clinically site-tested prior to commercialization. "Our system provides complete tracking of actual radiation levels on the skin, providing both instantaneous dose rate, as well as cumulative exposure," explained Daniel Bednarek, Ph.D., UB project director, researcher at UB’s Toshiba Stroke Research Center, professor of radiology and research associate professor of neurosurgery and biophysics in the School of Medicine and Biomedical Sciences.

Development of the system was spurred by a growing concern among physicians and by advisories issued by the Food and Drug Administration’s Center for Devices and Radiological Health warning of occasional, but severe, radiation-induced skin injuries during prolonged, fluoroscopically guided invasive procedures. "It can take a long time to insert a catheter into the brain and perform a complicated endovascular treatment, for example," explained Bednarek, also an adjunct professor in the Department of Physics in UB’s College of Arts and Sciences. "Patients undergoing such procedures sometimes develop erythema – redness – hair loss or even skin necrosis in the exposed area."

These effects can result whenever long fluoroscopic times are used during interventional procedures, such as coronary angioplasty, stent placement, radiofrequency cardiac ablation and vascular embolization. "With the equipment that currently is being used, the physician can minimize the chance for burns by moving the X-ray source instead of keeping the intensity on one spot," explained Darold Wobschall, Ph.D., UB professor emeritus of electrical engineering and president of Esensors. "The problem is that the physician is concentrating on the surgery and with X-rays coming in, he or she would have to be keeping mental track of where the dose is occurring at the same time." "Our system solves that problem," said Wobschall.

Through electronic sensors, the system tracks the position of the X-ray gantry and patient table, and thus, the location of the X-ray relative to the patient to determine the radiation exposure at the patient’s skin, he explained. "The computer tracks the beam’s location and intensity, presenting the beam and the cumulative distribution of dose on the patient’s skin as a color-coded graphic on a display screen," he said.

As the dose accumulates, the color on the display changes from green, which is acceptable, through yellow to red, which is a signal that the patient could be receiving too much radiation. This visualization of the X-ray beam and its location with reference to a graphic model of the patient presents the physician with real-time visual feedback, allowing him or her to make the appropriate adjustments. An added feature under development includes a visualization of the distribution and amount of X-ray scatter throughout the room, providing a way to gauge exposure for the physician and other health-care personnel who may be present.

The development effort for the computer graphic display was led by co-investigator Kevin Chugh, Ph.D., formerly a research scientist in UB’s New York State Center for Engineering Design and Industrial Innovation (NYSCEDII).

Petru M. Dinu, a doctoral candidate in the UB Department of Physics in the College of Arts and Sciences, played a major role in developing the system at UB’s Toshiba Stroke Research Center.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>