Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stony Brook University medical researcher developing new medication to prevent colon cancer

20.10.2004


A Stony Brook University researcher is testing a new form of aspirin--one that is much more potent than its commercially available counterpart, but with almost none of the side effects--to determine whether it can be used to prevent colon cancer in patients who are prone to the disease.



The study of the new medication--called nitric oxide-donating aspirin, or nitroaspirin--is supported by a $3.2 million grant from the National Cancer Institute. Basil Rigas, M.D., Professor of Medicine and Chief of the Division of Cancer Prevention at Stony Brook’s School of Medicine, will report the findings of his trials on laboratory animals at the third annual International Conference on Frontiers in Cancer Prevention Research today in Seattle. The conference is sponsored by the American Association for Cancer Research.

"Studies in cell culture and animals have shown that this new aspirin is hundreds to thousands of times more potent than traditional aspirin in inhibiting the growth of colon cancer cells and quite effective in preventing the development of colon cancer in laboratory animals," said Dr. Rigas, who will begin human trials of nitroaspirin by the end of this year.


While traditional aspirin has been shown to be effective in clinical trials in preventing certain cancers, it also is associated with significant side effects, including gastrointestinal bleeding, kidney damage, and allergic reactions ranging from mild to fatal. In addition, traditional aspirin is typically effective in preventing cancer in only about 50 per cent of those who take it.

Colon cancer can take many years to develop, but it is frequently not diagnosed in its earliest stages because cancerous lesions in the colon grown slowly and often without symptoms. More than 148,000 new cases of colon cancer are diagnosed in the U.S. each year and more than 56,000 Americans die of the diseases annually, according to the American Cancer Society.

In order to arrive at a more accurate diagnosis in less time, Dr. Rigas and his colleagues are using an advanced imaging technique called magnifying endoscopy to examine the growth of the earliest recognizable lesions, known as aberrant crypt foci, or ACF. The imaging technique will be used to evaluate 240 patients they expect to enroll over the next three years.

Dr. Rigas’ work focuses on the pharmacological prevention of cancers of the colon and the pancreas. His group has made key contributions to our understanding of how aspirin and aspirin-like drugs prevent colon and other cancers. He is now developing the highly promising nitroaspirin for the prevention of colon and pancreatic cancer, being supported by five NIH grants. He also pioneered the application of infrared spectroscopy to biology with emphasis on cancer, and holds several relevant patents. He is the author of over 100 peer-reviewed publications and has co-authored a textbook of Gastroenterology, which was translated into several foreign languages.

Warren Froelich | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>