Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stony Brook University medical researcher developing new medication to prevent colon cancer

20.10.2004


A Stony Brook University researcher is testing a new form of aspirin--one that is much more potent than its commercially available counterpart, but with almost none of the side effects--to determine whether it can be used to prevent colon cancer in patients who are prone to the disease.



The study of the new medication--called nitric oxide-donating aspirin, or nitroaspirin--is supported by a $3.2 million grant from the National Cancer Institute. Basil Rigas, M.D., Professor of Medicine and Chief of the Division of Cancer Prevention at Stony Brook’s School of Medicine, will report the findings of his trials on laboratory animals at the third annual International Conference on Frontiers in Cancer Prevention Research today in Seattle. The conference is sponsored by the American Association for Cancer Research.

"Studies in cell culture and animals have shown that this new aspirin is hundreds to thousands of times more potent than traditional aspirin in inhibiting the growth of colon cancer cells and quite effective in preventing the development of colon cancer in laboratory animals," said Dr. Rigas, who will begin human trials of nitroaspirin by the end of this year.


While traditional aspirin has been shown to be effective in clinical trials in preventing certain cancers, it also is associated with significant side effects, including gastrointestinal bleeding, kidney damage, and allergic reactions ranging from mild to fatal. In addition, traditional aspirin is typically effective in preventing cancer in only about 50 per cent of those who take it.

Colon cancer can take many years to develop, but it is frequently not diagnosed in its earliest stages because cancerous lesions in the colon grown slowly and often without symptoms. More than 148,000 new cases of colon cancer are diagnosed in the U.S. each year and more than 56,000 Americans die of the diseases annually, according to the American Cancer Society.

In order to arrive at a more accurate diagnosis in less time, Dr. Rigas and his colleagues are using an advanced imaging technique called magnifying endoscopy to examine the growth of the earliest recognizable lesions, known as aberrant crypt foci, or ACF. The imaging technique will be used to evaluate 240 patients they expect to enroll over the next three years.

Dr. Rigas’ work focuses on the pharmacological prevention of cancers of the colon and the pancreas. His group has made key contributions to our understanding of how aspirin and aspirin-like drugs prevent colon and other cancers. He is now developing the highly promising nitroaspirin for the prevention of colon and pancreatic cancer, being supported by five NIH grants. He also pioneered the application of infrared spectroscopy to biology with emphasis on cancer, and holds several relevant patents. He is the author of over 100 peer-reviewed publications and has co-authored a textbook of Gastroenterology, which was translated into several foreign languages.

Warren Froelich | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>