Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Master of antimalarial resistance

24.09.2004


A malaria parasite gene called pfcrt, already confirmed as the culprit behind resistance to the drug chloroquine in the malaria species Plasmodium falciparum, may be responsible for resistance to several other antimalarial drugs as well, a team of researchers reports in the 24 September issue of the journal Molecular Cell.



The discovery of pfcrt’s "central role" in malarial drug resistance could "help in the development of new therapeutic strategies that are effective against chloroquine-resistant parasites," said David Fidock of Albert Einstein College of Medicine, one of the lead authors of the paper.

Nearly three million people, mostly children, die from malaria each year. Chloroquine is one of the most affordable and widely used antimalarial drugs available, but chloroquine-resistant malaria has become an increasingly serious problem in the developing world, with death rates rising as a consequence.


The experiments conducted by Fidock and colleagues suggest that previously unknown mutations in the pfrct gene are associated with Plasmodium falciparum’s resistance to halofantrine and amantadine. The two drugs are used to treat mild to moderate cases of chloroquine-resistant malaria. Fidock said pfcrt’s role in halofantrine and amantadine resistance was "a big surprise actually, for both drugs. We thought initially that pfcrt was only critical for chloroquine."

The researchers uncovered the new pfcrt mutations after gradually creating strains of malaria resistant to halofantrine and amantadine treatment. As resistance to these two drugs increased, however, the parasites lost their resistance to chloroquine. This unusual pattern--gaining resistance to one drug while simultaneously losing resistance to another--may shed light on the exact role that pfcrt plays in resistance, according to Fidock and colleagues.

When a human is infected with malaria, the parasite lodges itself inside the red blood cells of its new host, drawing on the cells’ hemoglobin molecules for sustenance. As the parasite digests the hemoglobin inside a membrane pocket called the digestive vacuole, it creates a toxic byproduct called free heme. Normally, the parasite detoxifies the free heme by turning it into a product called hemozoin. As an antimalarial drug, chloroquine works by blocking this detoxification process.

The protein produced by the pfcrt gene is located in this digestive vacuole and may act as its gatekeeper. In chloroquine-resistant malaria, mutations in pfcrt may encourage chloroquine to "leak" out of the vacuole before it has a chance to stop the heme detoxification process. The pfcrt mutations seen in halofantrine and amantadine resistance seem to slow down this leak, restoring the parasite’s sensitivity to chloroquine therapy, the researchers suggest.

Fidock and colleagues note that one of the newly discovered pfcrt mutations can be found in a strain of malaria from Southeast Asia, suggesting their lab data have a parallel in the real world. The other members of the research team include Stephen Ward, Mathirut Mungthin and Patrick Bray of the Liverpool School of Tropical Medicine and Viswanathan Lakshmanan, David Johnson, and Amar Bir Singh Sidhu of Albert Einstein College of Medicine. The study was supported in part by the Wellcome Trust UK and BBSRC, the National Institutes of Health and the Ellison Medical Foundation.

David J. Johnson, David A. Fidock, Mathirut Mungthin, Viswanathan Lakshmanan, Amar Bir Singh Sidhu, Patrick G. Bray, and Stephen A. Ward: "Evidence for a Central Role for PfCRT in Conferring Plasmodium falciparum Resistance to Diverse Antimalarial Agents"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>