Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tummy Bug Puzzle Unravelled

11.05.2004


The bacterium, Helicobacter pylori, which infects the stomach, causes duodenal ulcer disease and is thought to cause stomach cancer. The question of why the bacteria are only found in the stomach has puzzled scientists for many years. Researchers at the Conway Institute and the Children’s Research Centre at Our Lady’s Hospital for Sick Children, Dublin in collaboration with workers at The National Centre for Sensor Research, Dublin City University and The University of Newcastle upon Tyne, UK have discovered the answer and their findings have been published in the current issue of The Proceedings of the National Academy of Sciences.



A family of small proteins called trefoil factors (TFF) are found in the mucous overlying stomach cells. Their job is to protect the stomach cells from harm. A team of researchers led by Dr Marguerite Clyne and Professor Brendan Drumm have now identified that one member of this family (TFF1) acts as a receptor or docking station for the bacteria and helps them to attach to the surface of the stomach. Within the gastrointestinal tract, this receptor is normally found only in the stomach, which would explain why H. pylori only infects the stomach and not the intestine or colon.

The World Health Organisation classifies H. pylori as a class I cancer causing agent. Epidemiological studies carried out by the H. pylori research group at the Conway Institute have shown that infection with the bacteria almost always occurs in early childhood rather than in adult life. Unless treated, it continues to infect the individual throughout their lives causing ulcer disease or cancer of the stomach in some individuals later in life. Gastric cancer is the fourth most common cause of death from cancer in the world.


Professor Drumm and Dr. Clyne, based in the Dept. of Paediatrics, University College Dublin and the Children’s Research Centre, Our Lady’s Hospital for Sick Children, believe TFF1 “to be the most important receptor for H. pylori” even though this family of factors “have never before been considered important in bacterial colonisation”. They will now turn their attention to developing ways of preventing the binding of the bacteria, which they hope will allow them to identify therapeutic targets for the prevention of gastric cancer.

Elaine Quinn | alfa
Further information:
http://www.pnas.org/cgi/doi/10.1073/pnas.0308489101

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>